Размеры вирусов. Происхождение вирусов. Строение вирусов. Вирусы, строение и размножение вирусов Компоненты вируса

Вирусная частица, также известная как вирион, представляет собой, по существу, нуклеиновую кислоту (ДНК или РНК), заключенную в оболочку белка. Вирусы чрезвычайно малы, диаметром приблизительно 20-400 нанометров. Крупнейший вирус, известный как Мимивирус, может иметь размер до 500 нанометров в диаметре. Для сравнения, человеческий эритроцит составляет около 6000-8000 нанометров в диаметре. В дополнение к малым размерам, вирусы также имеют различные формы. Подобно бактериям, некоторые вирусы имеют сферические или стержневые формы, а другие - икосаэдрические (полиэдр с 20 гранями) или спиральные формы.

Генетический материал вирусов

Вирусы могут иметь двухцепочечную ДНК, двухцепочечную РНК, одноцепочечную ДНК или одноцепочечную РНК. Тип генетического материала, обнаруженного в конкретном вирусе, зависит от его природы и функции. Генетический материал обычно не подвергается воздействию, но покрывается белковым слоем, известным как капсид. Вирусный геном может состоять из очень небольшого числа или до нескольких сотен генов в зависимости от типа вируса. Обратите внимание, что геном обычно организован как длинная молекула, которая обычно является прямой или круговой.

Репликация вирусов

Вирусы не способны самостоятельно реплицировать свои . Они должны полагаться на клетку-хозяина для воспроизведения. Чтобы произошла, вирусу необходимо сперва заразить живую клетку. Вирус вводит свой генетический материал в клетку и использует для репликации. После того, как было реплицировано достаточное количество вирусов, вновь образованные вирусы лизируют или разрывают клетку-хозяина и заражают другие клетки.

Вирусные оболочки

Белок, покрывающий вирусный генетический материал, известен как капсид. Капсид состоит из белковых субъединиц, называемых капсомерами. Капсиды могут иметь несколько форм: многогранник, стержень или комплекс. Они необходимы для защиты вирусного генетического материала от повреждений.

В дополнение к белковой оболочке у некоторых вирусов есть специализированные структуры. Например, вирус гриппа имеет мембраноподобную оболочку вокруг своего капсида. Добавки капсида также встречаются в . Например, бактериофаги могут иметь белковый «хвост», прикрепленный к капсиду, который используется для заражения бактерий-хозяев.

Вирусные заболевания

Вирусы вызывают ряд заболеваний в организмах, которые они заражают. Инфекции и заболевания человека, вызванные вирусами, включают лихорадку Эбола, ветряную оспу, корь, грипп, ВИЧ, герпес и многие другие. Вакцины эффективны для предотвращения некоторых типов вирусных инфекций, таких как оспа. Они работают, помогая организму построить ответ иммунной системы против конкретных вирусов.

Вирусные заболевания, которые воздействующие на животных, включают бешенство, ящур, птичий и свиной грипп. Заболевания растений включают мозаичное заболевание, кольцевая пятнистость, скручивание листьев и другие болезни листьев. Вирусы, известные как бактериофаги, вызывают заболевание у бактерий и археев.

Для вирусов характерна однородность формы и величины, они также не подвижны индивидуальному росту и в процессе своего онтогенеза имеют одинаковый размер.
Морфологические формы вирусов меньше, чем у бактерий.
Основными компонентами вириона (вируса вне клетки) является белковая оболочка - капсид - и с заключенной в неё НК - нуклеокапсид. Морфологические единицы капсида - капсомеры - построены из одного или нескольких белков. Эти капсомеры связаны типом симметрии, располагаются в однозначном порядке:
- спиральная симметрия - формирует цилиндрические структуры;
- кубическая симметрия - формирует структуры близкие к сфероидам.
Вирионы по типу формирования их структуры делятся на:
- простые вирионы - построены по одному типу симметрии;
- сложные вирионы - смешанный тип симметрии (спиральная и кубическая).

Структура простых вирионов

Существуют два типа простых вирионов:
- спиральные;
- сферические.
Спиральные вирионы. Различают:
1. Жесткие палочковидные вирусы имеющие форму жесткого негнущегося очень ломкого цилиндра. Сюда входят вирусы, которые различаются по своей длине 1300-3150 Ǻ при длине вирионов 180-250 Ǻ (вирус табачной мозаики).
Строение вируса табачной мозаики (ВТМ). В электронном микроскопе ВТМ,имеет форму палочек, толщиной 150-180 Ǻ, длина 3000 Ǻ (300 нм). Встречаются и с меньшей длиной, но они не обладают инфекционностью. Капсомеры вириона расположены по спиральному типу симметрии.

Химической, структурной и морфологической единицей является белок с молекулярной массой 17400 Д. Причем на каждые три витка спирали приходится 49 морфологических единицы. Внутри полого цилиндра располагается одноцепочная РНК, размер РНК превышает размер вириона, но РНК упакована компактно и расположена также по винтовой линии между капсомерами. На каждый борот спирали приходится 49 нуклеотидов, каждая молекула белка связана с тремя нуклеотидными остатками.
2. Нитевидные вирусы имеют форму эластичных легко изгибающихся и перекрещивающихся между собой нитей.
Сферические вирионы построены по кубической симметрии. В основе этой структуры лежит структура двадцатигранника - икосаэдр. Самый простой икосаэдр имеет 12 вершин и 20 граней, более сложные - содержат 20Т граней, где Т - число триагулирования.
Т=Р×f2,
Р - размер, класс икосаэдра, принимает значение 1, 3, 7, 13, 19, 21, 37,
f - любое целое число,
f 2 - указывает сколько равнобедренных треугольников расположено на одну грань икосаэдра.
Так, простейшие икосаэдры класса 1 при f =1, имеют 20 граней, при f =2 - 80 граней.
У вирусов с кубическим типом симметрии имеется два типа копсомеров: по вершинам располагаются капсомеры построены из 5-ти идентичных субъединиц (пентомеры), а по боковым граням - из 6 -ти субъединиц (гексомеры).
Размеры вируса определяются числом капсомеров, наименьший сферический вирус класса 1 имеет 12 пентомеров и не содержит гескомеров, а самый крупный вирус содержит 1472 капсомера. РНК или ДНК уложена очень компактно, образуя впячивания внутрь капсомеров по спирали.

Структура сложных вирусов

К сложным вирусам относятся вирусы, которые имеют сложный тип симметрии или дополнительные липидные или углеводные компоненты.
Дополнительные оболочки, либо липидные, либо углеводные, но структура этих оболочек не закодирована в НК. Эти оболочки клеточного происхождения и определить их содержание сложно, часто это фрагменты ЦПМ, которые захватывает вирус при выходе из клетки.
Функции оболочек:
защитная (нечувствительны к некоторым химическим, токсическим веществам);
они служат частью механизма, что облегчает проникновение вируса внутрь клетки, за счет того, что эти оболочки легко сливаются с ЦПМ.
оболочки могут иметь трубчатые выросты, которые обладают антигенной активностью и служат рецепторами для прикрепления ви руса на клеточной поверхности.
Вирусы, которые имеют дополнительные оболочки, полиморфны и напоминают форму пули или наперстка.

Бактериофаги - группа вирусов со сложным типом симметрии.
В 1917 г. Де Еррель обнаружил лизис клеток бактерий на поверхности чашки Петри и назвал этот агент неизвестной природы бактериофагом - пожиратель бактерий.
Встречаются как сложные вирусы, так и простые, они имеют 5 морфологических форм:
- фаги нитевидные (спиральный тип симметрии, в основном ДНК-содержащие);
- фаги с кубическим типом симметрии (имеют зачатки хвостового отростка, это РНК- или одноцеп. ДНК-содержащие);
- фаги с коротким отростком;
- фаги, имеющие два типа симметрии (головку - кубического типа симметрии и несокращающийся чехол - хвостовой отросток - построенный по спиральному типу симметрии) с двуцепочечной ДНК;
- самого сложно типа симметрии (с головкой и сокращающимся чехлом, ДНК-содержащие).
Модель фага Т2.
Это бактериофаг содержащий головку и отросток.
Головка построена по кубическому типу симметрии, внутри содержится двуцепоч. ДНК, которая во много раз превышает размеры фага. ДНК компактно уложена и во многом определяется стабилизирующей функцией белков путрисцина и спермицина, что связаны с двухвалентными металлами, их функция блокировать силы отталкивания и нейтрализуют отрицательный заряд частицы.
Отросток имеет сложное строение, состоит их воротничка, который примыкает к головке, сокращающегося чехла построенного по спиральному типу симметрии, внутри которого располагается полый цилиндр, а на конце отростка расположена шестиугольная базальная пластина, от которой отходят 6 нитей. Базальная пластина служит фактором адсорбции на поверхности клетки, а полый стержень обеспечивает транспортировку ДНК фага внутрь бактериальной клетки.

Вироиды. Вироиды представляют собой молекулу одноцепочечной РНК, ковалентно замкнутой в кольцо, и не содержат белковой оболочки. Вироиды относятся к инфекционным объектам. Некоторые заболевания растений имеют вироидную итеологию, но возбудителей болезней человека и животных - нет. Вироиды обладают трансмессивностью - способностью передаваться от объекта к объекту, часто от растения к растению механическим путем (ветром, насекомыми).

Культивирование вирусов

1. Использование лабораторных животных, но в связи с ограниченной специфичностью для культивирования вирусов необходимо иметь определенных лабораторных животных, также необходимы ткани человека, а это неудобства и нарушение биоэтики.
2. Культивирование виру сов на куриних эмбрионах, но это подходит не для всех вмрусов.
3. Использование культуры клеток или тканей лабораторных животных или человека, которые обладают пермессивностью для вируса - способностью размножать вирусы. Недостаток: клетки при культивировании стареют.
4. Культивирование с использованием гибридных клеток - гибрид нормальной клетки пермессивной для вируса с раковой клеткой. Раковые клетки обладают неконтролируемыми митозами, тем самым продлевая жизнь пермесссивным клеткам.

Влияние факторов внешней среды
1. Нагревание. Большинство вирусов устойчивы при комнатной температуре, но уменьшение инфекционности наступает при 50-60о С. Скорость репродукции у вируса гриппа уменьшается при 38-39о С, а вирус табачной мозаики стабилен при 65о С, но богибает при 70о С.
2. Механическое воздействие
- большинство вирусов устойчивы к осмотическому давлению,
- ультразвук разрушает палочковидные вирусы за несколько минут и слабо действует на сферические вирусы,
- высушивание - одни вирусы легко переносят, а другие при понижении влажности инактивируются при комнатной температуре.
3. Излучение: УФ и ионизирующая радиация вызывают гибель, а в низких дозах - мутации.
4. Химические факторы:
- спирт, йод, перекись водорода,
- антибиотики, но эффективных для системного лечения нет. Есть антибиотики профилактические и есть те, которые используют для местного лечения.
Агентом против вирусов является система интерферонов, продуцируемых человеческим организмом.

Хранение вирусов в лабораториях
Вирусы хранят в лиофильновысушенном состоянии состоянии в системе криопротекторов, высушивание при 60оС из замороженного состояния. При этом вирусная частичка помещается в криопротекторы, что защищают вирусы от повреждения частичками льда. Также вирусы можно хранить в сыворотке крови в атмосфере СО2 при -70о С, в виде стабилизатора используют глицерин.

Основные группы вирусов

Вирусы в зависимости от объекта воздействия делят на: вирусы бактерий, растений, насекомых, животных и человека.
Имеется искусственная классификация вирусов, которая закладывает:
- тип НК (ДНК или РНК),
- структура одно- или двоцепочечная,
- наличие или отсутствие внешней оболочки,
- если одноцепочечная РНК, то +РНК или -РНК,
- наличие в структуре обратной транскриптазы.

Строение вирусов является неклеточным, так как они не имеют никаких органелл. Одним словом, это переходная стадия между мертвой и живой материей. Вирусы были открыты русским биологом Д.И. Ивановским в 1892 году в процессе рассмотрения мозаичной болезни табака. Все строение вирусов - это РНК или ДНК, заключенные в белковую оболочку, называемую капсидом. Вирионом называется сформированная инфекционная частица.

Вирусы гриппа или герпеса имеют дополнительную липопротеидную оболочку, которая возникает из цитоплазматической мембраны клетки хозяев. Вирусы подразделяются на ДНК-содержащие и РНК-содержащие, ведь они могут иметь только 1 тип Однако подавляющее количество вирусов - это РНК-содержащие. Их геномы бывают одноцепочечными и двуцепочечными. Внутреннее строение вирусов позволяет им размножаться только лишь в клетках других организмов, и никак иначе. Они совершенно не проявляют никакой внеклеточной жизнедеятельности. Размеры широко распространенных вирусов - от 20 до 300 нм диаметром.

Строение вирусов-бактериофагов

Вирусы, которые поражают бактерии изнутри, называют Они способны проникнуть в и разрушить.

Тело бактериофага кишечной палочки имеет головку, из которой выходит полый стержень, укутанный чехлом На конце этого стержня находится базальная пластинка, на которой закреплены 6 нитей. Внутри головки находится молекула ДНК. При помощи специальных отростков вирус-бактериофаг прикрепляется к телу бактерии кишечной палочки. Используя специальный фермент, фаг растворяет и проникает внутрь. Далее из канала стержня за счет сокращений головки выпрыскивается молекула ДНК, и буквально через 15 минут бактериофаг полностью перестаивает метаболизм клетки бактерии на нужный ему лад. Бактерия перестает синтезировать свою ДНК - она теперь синтезирует нуклеиновую кислоту вируса. Все это завершается тем, что появляется около 200-1000 особей фагов, а клетка бактерии разрушается. Все бактериофаги делятся на вирулентные и умеренные. Последние не совершают репликаций в клетке бактерии, а вирулентные образуют поколение особей в уже зараженном участке.

Вирусные болезни

Строение и жизнедеятельность вирусов обуславливается тем, что они способны существовать только в клетках других организмов. Поселившись в любой клетке, вирус может вызвать серьезное заболевание. Нередко их атакам подвергаются сельскохозяйственные растения и животные. Данные заболевания резко ухудшают плодовитость культур и являются причиной многочисленной гибели животных.

Существуют вирусы, которые способны вызвать различные заболевания и у человека. Всем известны такие болезни, как оспа, герпес, грипп, полиомиелит, свинка, корь, желтуха и СПИД. Все они возникают из-за деятельности вирусов. Строение вируса оспы почти не отличается от строения вируса герпеса, так как они входят в одну группу - Herpes Virus, куда входят еще некоторые В наше время активно распространяется вирус иммунодефицита человека (ВИЧ). Как побороть его, пока никому неизвестно.


Все вирусы подразделяют на две группы: простые и сложные. Простые вирусы содержат нуклеиновую кислоту и несколько кодируемых ею полипептидов. Сложные вирусы состоят из нуклеиновой кислоты, липидов и углеводов, которые имеют клеточное происхождение, т. е. у большинства вирусов не кодируются вирусным геномом. В исключительных случаях в вирион включаются клеточные нуклеиновые кислоты или полипептиды.

В состав вирусов входят нуклеиновые кислоты и белки. Белки и нуклеиновые кислоты неразрывно связаны между собой. Синтез белков не возможет без нуклеиновых кислот, а синтез кислот – без активного участия белков, ферментов. Известно, что нуклеиновые кислоты и белки состоят из С, О, Н, N, P, S. геном вируса представлен ДНК или РНК. По строению генома зрелые вирусные частицы подразделяют на следующие группы:

1. Вирусы, геном которых – одноцепочная молекула РНК, обладающая матричной активностью;

2. Вирусы, геном которых – одноцепочная РНК не обладающая матричной активностью;

3. Вирусы с одноцепочной фрагментированной РНК, не обладающей матричной активностью;

4. Вирусы, геном которых состоит из нескольких молекул РНК, обладающих матричной активностью;

5. Вирусы с двухцепочной фрагментированной РНК;

6. Вирусы с линейной одноцепочной ДНК;

7. Вирусы с двухцепочной циркулярной ДНК;

8. Вирусы с двухцепочной линейной инфекционной ДНК;

9. Вирусы с двухцепочной линейной неинфекционной ДНК.

По нуклеотидному составу ДНК вирусов беспозвоночных животных более разнообразна, чем ДНК позвоночных. Нуклеиновые кислоты вирионов в большинстве случаев имеют вирусное, а не клеточное происхождение. Инфекционность вирусов связана с нуклеиновой кислотой, а не с белком, входящим в их состав. Это было доказано немецкими учеными Г. Шраммом и А. Гирером (1956). Нуклеиновые кислоты являются хранителем всей генетической информации вируса. Их химический состав и структура принципиально не отличаются от нуклеиновых кислот более высокоорганизованных существ (бактерий, простейших, животных). Большую часть вирусной частицы составляют белки в состав которых входят те же аминокислоты, что и белки других организмов. Вирусный белок представлен в основном полипептидами одного-трех типов. Белки на поверхности вирусной частицы представляют собой антигены, ответственные за образование антител у инфицированных животных. Основная часть белков – это белки, синтезированные в восприимчивой клетке по информации генома вируса. В редких случаях возможно включение белков инфицированной клетки в липопротеидные оболочки и сердцевину некоторых вирусов (вирус птичьего миелобластоза, икосаэдрические вирусы).

Белки вирусов подразделяют на белки капсида, сердцевины, оболочки и ферментативные белки. Помимо белков в липопротеидной оболочки обнаружены липиды и углеводы. Углеводы преимущественно содержаться в гликопротеидных пепломерах на поверхности вирусной частицы.

В составе вирусов обнаружены минеральные вещества К, Na, Ca, Mg, Fe. Они участвуют в формировании связей белка с нуклеиновой кислотой.

Белки вирусов выполняют защитную (защищают от неблагополучного воздействия окружающей среды) и адресную (имеют рецепторы к определенной чувствительной клетке) функции. Кроме этого белки вирусов облегчают проникновение их в восприимчивую клетку.

Функции нуклеиновых кислот вирусов заключаются в следующем. Они программируют наследственность вирусов, участвуют в синтезе белка, отвечают за инфекционные свойства вирусных частиц.

Отдельная вирусная частица получила название вирион. Белковая оболочка вириона называется капсидом. Капсиды состоят из поверхностных белковых субъединиц, которые в свою очередь образованы белковыми молекулами. Различают следующие уровни сложности строения капсида. Первый уровень – отдельные полипептиды (химические единицы), второй – капсомеры (морфологические единицы), которые состоят из одной или нескольких белковых молекул, третий – пепломеры (молекулы, которые образуют выступы на липопротеидной оболочке вириона).

Для вирусов характерны два типа симметрии строения капсида: кубический и спиральный. Вирусы с кубическим типом симметрии называются изометрическими. Все известные ДНК-содержащие вирусы животных обладают изометрическими капсидами. Кристаллографические данные свидетельствуют о трех типах фигур с кубическим типом симметрии: тетраэдр, октаэдр и икосаэдр. Икосаэдрическая симметрия для вирусов предпочтительнее, так как этот тип симметрии наиболее экономичен.

Вирусы со спиральным типом симметрии строения капсида характеризуются тем, что капсид у них построен из одинаковых, спирально расположенных белковых субъединиц (капсомеров).

Бактериофаги (вирусы бактерий) в структурном отношении представляют собой сочетание двух типов симметрии: кубический и спиральной. Головка их представляет собой кубическую структуру, а отросток – спиралевидную.

Характер взаимодействия между нуклеиновой кислотой и капсомерами у вирусов с различным типом симметрии строения капсида различается. У вирусов со спиральным типом строения капсида белковые субъединицы тесно взаимодействуют с нуклеиновой кислотой. У икосоэдрических вирусов максимально выраженного регулярного взаимодействия между каждой белковой субъединицей и нуклеиновой кислотой не существует.

Видео: Вирус гепатита C в печени



В многовековой истории нашей планеты в развитие всей флоры и фауны постоянно вмешивались невидимые захватчики – вирусы (лат. virus – яд).
В связи с микроскопическим размером вирусы лишены такого сложного внутреннего многоклеточного строения как у живых организмах, так как они в разы меньше любой живой клетки и даже намного меньше какой-либо бактерии. Влиянию вирусов подвержены все известные живые организмы, не только люди, животные, рептилии и рыбы, но и всевозможные растения.
Только в начале 20-ого века, после изобретения электронного микроскопа, ученые смогли увидеть своими глазами крошечных возбудителей болезней, о которых до того момента уже было высказано великое множество теорий. Определенные вирусы человека отличались между собой по форме и размеру. В зависимости от типа болезни симптомы разных заболеваний проявляются по-разному: воспаляется кожа, внутренние органы или суставы.

Вирусная инфекция

В 1852 году Дмитрию Иосифовичу Ивановскому (русский ботаник) удалось получить инфекционный экстракт из растений табака, который был заражен мозаичной болезнью. Такая структура получила название вируса табачной мозаики.

Строение вируса


В самом центре вирусной частицы располагается геном (наследственная информация, которая представлена ДНК или РНК структурой – позиция 1). Вокруг генома располагается капсид (позиция 2), который представлен белковой оболочкой. На поверхности белковой оболочки капсида располагается липопротеидная оболочка (позиция 3). Внутри оболочки располагаются капсомеры (позиция 4). Каждый капсомер состоит из одной или двух белковых нитей. Число капсомеров для каждого вируса строго постоянно. Каждый вирус содержит определенное число капсомеров, поэтому их количество у разных видов вируса
существенно отличается. Некоторые вирусы не имеют в своем строении белковой оболочки (капсида). Такие вирусы называют простыми. И наоборот, вирусы, которые в своем строении имеют еще одну наружную (дополнительную липопротеидную) оболочку называются сложными. У вирусов различают две жизненные формы. Внеклеточная жизненная форма вируса называется варион (состояние покоя, ожидания). Внутриклеточная форма жизни вируса, которая активно репродуцирует, называется вегетативная.

Свойства вирусов

Вирусы не имеют клеточного строения, их относят к мельчайшим живым организмам, воспроизводятся внутри клеток, имеют простое строение, большинство из них вызывают различные болезни, каждый тип вируса распознает и инфицирует лишь определенные типы клеток, содержат только один тип нуклеиновой кислоты (ДНК или РНК).

Классификация вирусов

Как клетки организма усваивают вещества

В отличие от других живых организмов вирусу для воспроизводства потомства нужны живые клетки. Сам по себе он не умеет размножаться. К примеру, клетки организма человека состоят из ядра (в нем сосредоточена ДНК — генетическая карта, план действий клетки для поддержания ее жизнедеятельности). Ядро клетки окружает цитоплазма, в которой расположены митохондрии (они вырабатывают энергию для химических реакций, лизосомы (в них расщепляются поступившие из вне материалы), полисомы и рибосомы (в них вырабатываются белки и ферменты для осуществления химических реакций, которые происходят в клетке). Вся цитоплазма клетки, вернее ее пространство пронизано сетью канальцев, по которым всасываются нужные вещества, а также выводятся ненужные. Также клетка окружена мембраной, которая защищает ее и выполняет роль двустороннего фильтра. Мембрана клетки постоянно вибрирует. При наличии на поверхности мембраны корпускулу белка она изгибается и заключает его в пищеварительный пузырек, который втягивает в клетку. Далее мозговой центр клетки (ядро) распознает поступившее извне вещество и дает серию команд центрам, которые расположены в цитоплазме. Они разлагают поступившее вещество на более простые соединения. Часть полезных соединений используют для поддержания жизнедеятельности и выполнения запрограммированных функций, а ненужные соединения выводят наружу из клетки. Так осуществляется процесс поглощения, переваривания, усвоения веществ в клетке и вывода ненужных наружу.

Размножение вирусов


Как отмечалось выше, вирусу для воспроизводства себе подобных нужны живые клетки, потому что сам по себе он не умеет размножаться. Процесс проникновения вируса в клетку состоит из нескольких этапов.

Первый этап проникновения вируса в клетку заключается в осаждении (адсорбции посредством электрического взаимодействия) его на поверхности клетки – мишени. Клетка – мишень должна в свою очередь обладать соответствующими поверхностными рецепторами. Без наличия соответствующих поверхностных рецепторов вирус не может присоединиться к клетке. Поэтому, такой вирус, который присоединился к клетке в результате электрического взаимодействия можно убрать путем встряхивания. Второй этап проникновения вируса в клетку называют необратимым. При наличии соответствующих рецепторов вирус прикрепляется к клетке и белковые шипы или нити начинают взаимодействовать с рецепторами клетки. В качестве рецепторов клетки выступает белок или гликопротеид, который обычно специфичен для каждого вируса.

Во время третьего этапа вирус всасывается (перемещается) в клеточной мембране с помощью внутриклеточных мембранных пузырьков.

В четвертом этапе ферменты клетки расщепляют вирусные белки, и таким образом освобождается из «заточения» геном вируса, в котором располагается наследственная информация, которая представлена ДНК или РНК структурой. Затем спираль РНК быстро разворачивается и устремляется в ядро клетки. В ядре клетки геном вируса изменяет генетическую информацию клетки и реализует свою. В результате таких изменений работа клетки полностью дезорганизуется и вместо нужных ей белков и ферментов клетка начинает синтезировать вирусные (видоизменённые) белки и ферменты.


Время прошедшее с момента проникновения вируса в клетку до выхода новых варионов называется скрытым, или латентным периодом. Оно может изменяться от нескольких часов (оспа, грипп) до нескольких суток (корь, аденовирус).

Последние материалы раздела:

HTML: основы для начинающих Учим язык html с нуля
HTML: основы для начинающих Учим язык html с нуля

Я решил уделить больше внимания новичкам, желающим приобрести знания в области сайтостроения. На это меня подтолкнула моя преподавательница,...

Личный кабинет Biglion (Биглион)
Личный кабинет Biglion (Биглион)

Биглион – сервис для экономного шопинга. Он предоставляет миллионам пользователей купоны и дисконты в размере 50-90% на приобретение самых...

Как установить Camtasia Studio?
Как установить Camtasia Studio?

Программой Camtasia Studio 8 можно воспользоваться для записи видео рабочего стола. Программа располагает огромным функционалом, позволяющим...