Суперпозиция функций примеры. Суперпозиция функций алгебры логики. Самодвойственные булевы функции

Тема: «Функция: понятие, способы задания, основные характеристики. Обратная функция. Суперпозиция функций.»

Эпиграф урока:

«Изучать что-либо и не задумываться над

выученным - абсолютно бесполезно.

Задумываться над чем-либо, не изучив

предварительно предмет раздумий-

Конфуций.

Цель и психолого-педагогические задачи урока :

1) Общеобразовательная (нормативная) цель : повторить со студентами определение и свойства функции. Ввести понятие суперпозиции функций.

2) Задачи математического развития студентов : на нестандартном учебно-математическом материале продолжить развитие ментального опыта учащихся, содержательной когнитивной структуры их математического интеллекта, в том числе, способностей к логико-дедуктивному и индуктивному, аналитическому и синтетическому обратимому мышлению, к алгебраическому и образно-графическому мышлению, к содержательному обобщению и конкретизации, к рефлексии и самостоятельности как метакогнитивной способности студентов; продолжить развитие культуры письменной и устной речи как психологических механизмов учебно-математического интеллекта.

3) Воспитательные задачи : продолжить личностное воспитание у студентов познавательного интереса к математике, ответственности, чувства долга, академической самостоятельности, коммуникативного умения сотрудничать с группой, преподавателем, согруппниками; аутогогической способности к соревновательной учебно-математической деятельности , стремления к высоким и высшим ее результатам (акмеический мотив).


Тип урока : изучение нового материала; по критерию ведущего математического содержания - урок-практикум; по критерию типа информационного взаимодействия учащихся и преподавателя – урок сотрудничества.

Оборудование урока:

1. Учебная литература:

1) Кудрявцев математического анализа: Учеб. для студентов университетов и вузов. В 3 т. Т. 3. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1989. – 352 с. : ил.

2) Демидович задач и упражнений по математическому анализу. – 9-е изд. – М.: Издательство «Наука», 1977.

2. Иллюстрации.

Ход урока .

1.Объявление темы и главной образовательной цели урока; стимулирование чувства долга, ответственности, познавательного интереса студентов при подготовке к сессии .

2.Повторение материала по вопросам.

a) Дать определение функции.

Одним из основных математических понятий является понятие функции. Понятие функции связано с установлением зависимости между элементами двух множеств.

Пусть даны два непустых множества и . Соответствие f, которое каждому элементу сопоставляет один и только один элемент , называется функцией и записывается y = f(x). Говорят еще, что функция f отображает множество на множество .

https://pandia.ru/text/79/018/images/image003_18.gif" width="63" height="27">.gif" width="59" height="26"> называется множеством значений функции f и обозначается E(f).

б) Числовые функции. График функции. Способы задания функций.

Пусть задана функция .

Если элементами множеств и являются действительные числа, то функцию f называют числовой функцией . Переменная x при этом называется аргументом или независимой переменной, а y – функцией или зависимой переменной (от x). Относительно самих величин x и y говорят, что они находятся в функциональной зависимости .

Графиком функции y = f(x) называется множество всех точек плоскости Oxy, для каждой из которых x является значением аргумента, а y – соответствующим значением функции.

Чтобы задать функцию y = f(x), необходимо указать правило, позволяющее, зная x, находить соответствующее значение y.

Наиболее часто встречаются три способа задания функции: аналитический, табличный, графический.

Аналитический способ : функция задается в виде одной или нескольких формул или уравнений.

Например:

Если область определения функции y = f(x) не указана, то предполагается, что она совпадает с множеством всех значений аргумента, при которых соответствующая формула имеет смысл.

Аналитический способ задания функции является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию y = f(x).

Графический способ : задается график функции.

Преимуществом графического задания является его наглядность, недостатком – его неточность.

Табличный способ : функция задается таблицей ряда значений аргумента и соответствующих значений функции. Например, известные таблицы значений тригонометрических функций, логарифмические таблицы.

в) Основные характеристики функции.

1. Функция y = f(x),определенная на множестве D, называется четной , если выполняются условия и f(-x) = f(x); нечетной , если выполняются условия и f(-x) = -f(x).

График четной функции симметричен относительно оси Oy, а нечетной – относительно начала координат. Например, – четные функции; а y = sinx, https://pandia.ru/text/79/018/images/image014_3.gif" width="73" height="29"> – функции общего вида, т. е. не четные и не нечетные.


2.Пусть функция y = f(x) определена на множестве D и пусть . Если для любых значений аргументов из неравенства вытекает неравенство: , то функция называется возрастающей на множестве ; если , то функция называется неубывающей на https://pandia.ru/text/79/018/images/image021_1.gif" width="117" height="28 src=">то функция наз. убывающей на ; - невозрастающей .

Возрастающие, невозрастающие, убывающие и неубывающие функции на множестве https://pandia.ru/text/79/018/images/image023_0.gif" width="13" height="13">D значение (x+T)D и выполняется равенство f(x+T) = f(x).

Для построения графика периодической функции периода T достаточно построить его на любом отрезке длины T и периодически продолжить его во всю область определения.

Отметим основные свойства периодической функции.

1) Алгебраическая сумма периодических функций, имеющих один и тот же период T, есть периодическая функция с периодом T.

2) Если функция f(x) имеет период T, то функция f(ax) имеет период T/a.

г) Обратная функция.

Пусть задана функция y = f(x) с областью определения D и множеством значений E..gif" width="48" height="22">, то определена функция x = z(y) с областью определения E и множеством значений D. Такая функция z(y) называется обратной к функции f(x) и записывается в следующем виде: . Про функции y = f(x) и x = z(y) говорят, что они являются взаимно обратными. Чтобы найти функцию x = z(y), обратную к функции y = f(x), достаточно решить уравнение f(x) = y относительно x.

Примеры :

1. Для функции y = 2x обратной функцией является функция x = ½ y;

2. Для функции обратной функцией является функция .

Из определения обратной функции вытекает, что функция y = f(x) имеет обратную тогда и только тогда, когда f(x) задает взаимно однозначное соответствие между множествами D и E. Отсюда следует, что любая строго монотонная функция имеет обратную . При этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

3. Изучение нового материала.

Сложная функция.

Пусть функция y = f(u) определена на множестве D, а функция u = z(x) на множестве , причем для соответствующее значение . Тогда на множестве определена функция u = f(z(x)), которая называется сложной функцией от x (или суперпозицией заданных функций, или функцией от функции ).

Переменную u = z(x) называют промежуточным аргументом сложной функции.

Например, функция y = sin2x есть суперпозиция двух функций y = sinu и u = 2x. Сложная функция может иметь несколько промежуточных аргументов.

4. Решение нескольких примеров у доски.

5. Заключение урока.

1) теоретико-прикладные итоги практического занятия; дифференцированная оценка уровня ментального опыта учащихся; уровня усвоения ими темы, компетентности, качества устной и письменной математической речи; уровня проявленного творчества; уровня самостоятельности и рефлексии; уровня инициативы, познавательного интереса к отдельным методам математического мышления; уровней сотрудничества, интеллектуальной состязательности, стремления к высоким показателям учебно-математической деятельности и др.;

2) объявление аргументированных отметок, поурочного балла.

Соответствием G между множествами А и В называется подмножество . Если , то говорят, что b

соответствует а. Множество всех соответствующих элементу

Называется образом элемента а. Множество всех которым соответствует элемент , называется

прообразом элемента b .

Множество пар (Ь, а) таких, что называется обратным по

отношению к G и обозначается . Понятия образа и прообраза для

" G и взаимно обратны.

Примеры. 1) Поставим в соответствие натуральному числу п

множество действительных чисел . Образом числа 5

будет полуинтервал

(так обозначают наибольшее целое, меньшее или равное X ). Прообразом числа 5 при этом соответствии является бесконечное множество: полуинтервал . Получение [М ]по исходному множеству М называется операцией замыкания . Множество М называется функционально замкнутым классом , если [М ] = М . Подмножество m Í M называется функционально полной системой в М , если [m ] = М .

Замыкание [М ]представляет собой все множество функций, которое можно получить из М путем применения операции суперпозиции, т.е. всех возможных подстановок.

Замечания. 1. Очевидно, любая система функций {f } является функционально полной в себе самой.

2 . Без ограничения общности можно считать, что тождественная функция f (х ), не изменяющая значений истинности переменных, изначально входит в состав любой системы функций.

Пример 2 . Для рассмотренных ниже систем функций {f } выполнить следующие действия:

1) найти замыкание [f ],

2) выяснить, будет ли система {f } замкнутым классом,

3) найти функционально полные системы в {f }.

Решение .

I. {f }={0}. При подстановке функции {0} в саму себя получаем ее же, т.е. никаких новых функций не образуется. Отсюда следует: [f ] = {f }. Рассмотренная система является функционально замкнутым классом. Функционально полная система в ней одна и равна всей {f }.

II. {f }= {0,Ø }. Подстановка Ø (Ø х )дает тождественную функцию, которая формально не расширяет исходную систему. Однако при подстановке Ø (0) получим тождественную единицу - новую функцию, которой не было в исходной системе: Ø (0)=1. Применение всех других подстановок не приводит к появлению новых функций, например: ØØ 0= 0, 0(Ø х )=0.

Таким образом, применение операции суперпозиции позволило получить более широкое по сравнению с исходным множество функций [f ]={0,Ø ,1}. Отсюда следует строгое вхождение: {f } Ì [f ]. Исходная система {f }не является функционально замкнутым классом. Кроме самой системы {f }других функционально полных систем в ней нет, поскольку в случае её сужения из одной функции f= 0 нельзя путем подстановки получить отрицание, а из одной функции отрицания нельзя получить тождественный нуль.

III. {f } = {& ,Ú ,Ø }.Замыканием данной системы является все множество функций алгебры логики P 2 , так как формулу любой из них можно представить в виде ДНФ либо КНФ, в которых используются элементарные функции {f } = {& ,Ú ,Ø}. Данный факт является конструктивным доказательством полноты рассмотренной системы функций в P 2: [f ] =P 2 .

Поскольку в P 2 содержится бесконечное множество других функций, отличных от {f } = {& ,Ú ,Ø }, то отсюда следует строгое вхождение: {f }Ì[f ]. Рассмотренная система не является функционально замкнутым классом.

Помимо самой системы функционально полными в ней будут подсистемы {f } 1 = {& ,Ø } и {f } 2 = {Ú ,Ø }. Это следует из того, что при помощи правил де Моргана функцию логического сложения Úможно выразить через {& ,Ø},а функцию логического умножения & - через {Ú, Ø}:

(х & у ) = Ø (`х Ú`у ), (х Ú у ) = Ø (х &`у ).

Других функционально полных подсистем в {f } нет.

Проверку полноты подсистемы функций {f } 1 Ì {f }во всей системе {f }можно производить путем сведения {f } 1 к другой, заведомо полной в {f }системе.

Неполноту подсистемы {f } 1 в {f }можно проверить, доказав строгое вхождение [f 1 ] Ì [f ].

Определение. Подмножество m Í M называют функциональным базисом (базисом ) системы М , если [m ] = М , а после исключения из нее любой функции множество оставшихся не полно в М .

Замечание . Базисами системы функций {f} являются все ее функционально полные подсистемы {f} 1 , которые невозможно уменьшить без потери полноты в {f} .

Пример 3 . Для всех систем, рассмотренных в Примере 2, найти базисы.

Решение .В случаях 1 и 2 функционально полными являются только сами системы и сузить их невозможно. Следовательно, они же являются и базисами.

В случае 3 есть две функционально полные в {f }подсистемы {f } 1 = {&,Ø } и {f } 2 ={Ú,Ø }, которые невозможно сократить без потери полноты. Они будут базисами системы {f } = {&,Ú,Ø}.

Определение. Пусть система {f }является замкнутым классом. Ее подмножество {f } 1 Ì {f }называют предполным классом в {f }, если {f } 1 не полно в {f } ([f 1 ] Ì [f ]), а для любой функции jиз системы{f }, не входящей в {f } 1 (jÎ{f } \ {f } 1) справедливо: [j È {f } 1 ] = [f ], т.е. прибавление jк {f } 1 делает ее полной в {f }.

Задачи

1. Проверить замкнутость множеств функций:

а) {Ø }; б) {1, Ø }; в) {(0111); (10)};г) {(11101110); (0110)};д) {(0001); (00000001); (0000000000000001); … }.

2. Проверить полноту систем функций в P 2:

а) {0,Ø }; б) {(0101) , (1010) }; в) {¯ }; г) {(0001) , (1010) }.

3. Найти замыкание системы функций и ее базис:

а) {0 , 1 , Ø }; б) {(1000) , (1010), (0101) }; в) {(0001) , (1110), (10) }; г) {(1010) , (0001), (0111) }.

1.10.2 Функции, сохраняющие константы. Классы Т 0 и Т 1

Определение. Функция f (`х n ) сохраняет 0, если f (0,..., 0) = 0. Функция f (`х n ) сохраняет 1, если f (1, ... , 1) = 1.

Множества функций n переменных, сохраняющих 0 и 1, обозначают, соответственно, Т 0 n и Т 1 n . Все множества функций алгебры логики, сохраняющих 0 и 1, обозначают Т 0 и Т 1 . Каждое из множеств Т 0 и Т 1 является замкнутым предполным классом в Р 2 .

Из элементарных функций в Т 0 и Т 1 одновременно входят, например, &и Ú. Принадлежность любой функции к классам Т 0 , Т 1 можно проверить по первому и последнему значению ее вектора значений в таблице истинности либо непосредственной подстановкой нулей и единиц в формулу при аналитическом задании функции.

Определение. Дублирующей называют такую подстановку, при которой вместо нескольких независимых переменных в функцию подставляют одну и ту же переменную. При этом величины переменных в наборах, которые раньше принимали значения независимо друг от друга, всегда будут одинаковыми.

ЗАДАЧИ

1.Проверить принадлежность к классам Т 0 и Т 1 функций:

а) обощенного сложения, б) обощенного умножения, в) констант, г) ху Ú yz , д) х ® у ® ху , е) х Å у , ж)( х 1 ÅÅ х n) ® ( y 1 ÅÅ y m) при n,m Î N.

2. Доказать замкнутость каждого из классов Т 0 и Т 1 .

3. Доказать, что если f (`х n ) ÏТ 0 , то из нее путем дублирующей подстановки можно получить константу 1 либо отрицание.

4. Доказать, что если f (`х n ) ÏТ 1 , то из нее путем дублирующей подстановки можно получить константу 0 либо отрицание.

5. Доказать предполноту каждого из классов Т 0 и Т 1 (например, сведением дополненной системы к {f } = {& ,Ú ,Ø }).

6. Найти мощность классов Т 0 n и Т 1 n .

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций.

Содержание

Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Последние материалы раздела:

HTML: основы для начинающих Учим язык html с нуля
HTML: основы для начинающих Учим язык html с нуля

Я решил уделить больше внимания новичкам, желающим приобрести знания в области сайтостроения. На это меня подтолкнула моя преподавательница,...

Личный кабинет Biglion (Биглион)
Личный кабинет Biglion (Биглион)

Биглион – сервис для экономного шопинга. Он предоставляет миллионам пользователей купоны и дисконты в размере 50-90% на приобретение самых...

Как установить Camtasia Studio?
Как установить Camtasia Studio?

Программой Camtasia Studio 8 можно воспользоваться для записи видео рабочего стола. Программа располагает огромным функционалом, позволяющим...