Взаимодействие вируса с клеткой. Репродукция (размножение) вирусов. Взаимодействие вируса с клеткой хозяина Интегративная форма взаимодействия вируса и клетки

Общая вирусология.1 блок

1. Особенности биологии вирусов.

Вирусы – микроорганизмы, составляющие царство Vira. Отличительные признаки:

1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса). По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур. Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями. РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

5) содержащей две одинаковые однонитевые РНК.

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой); б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию); г) элементы клетки хозяина.

2. Принципы классификации вирусов.

В основу классификации вирусов положены следующие категории:

тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особенности воспроизводства вирусного генома;

размер и морфология вирионов, количество капсомеров и тип симметрии;

наличие суперкапсида;

чувствительность к эфиру и дезоксихолату;

место размножения в клетке;

антигенные свойства и пр.

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают: а) ДНК-содержащие б) РНК-содержащие вирусы.

Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными.

Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию.

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различной:

а) палочковидной (вирус табачной мозаики), б) пулевидной (вирус бешенства), в) сферической (вирусы полио¬миелита, ВИЧ), г) нитевидной (филовирусы),

д) в виде сперматозоида (многие бактериофаги).

Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирусинфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.

Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

3. Методы культивирования вирусов.

Основные методы культивирования вирусов:

1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;

2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7-10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.

В результате заражения могут происходить и появляться:

1) гибель эмбриона;

2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;

3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);

4) размножение в культуре ткани (это основной метод культивирования вирусов).

Различают следующие типы культур тканей:

1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;

2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки. Источником являются любые органы и ткани, чаще всего – эмбриональные (обладают высокой митотической активностью).

Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.

О репродукции вирусов в культуре ткани судят по их цитопатическому действию, которое носит разный характер в зависимости от вида вируса.

Основные проявления цитопатического действия вирусов:

1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;

2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;

3) клетки могут расти, но делиться, в результате чего образуются гигантские клетки;

4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);

5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).

4. Вирусологический метод, основные этапы.

Этиологическая диагностика вирусных заболеваний проводится вирусологическим, вирусоскопическим, серологическим и молекулярно-генетическим методами. Три последних метода могут быть использованы как экспресс-диагностические.

Вирусологический метод диагностики.

Конечной целью метода является идентификация вирусов до вида или серологического варианта. Вирусологический метод включает несколько этапов: 1) отбор материала для исследования; 2) обработку вируссодержащего материала; 3) заражение материалом чувствительных живых систем; 4) индикацию вирусов в живых системах; 5) титрование выделенных вирусов; 6) идентификацию вирусов в иммунных реакциях.

1. Отбор материала для исследования. Проводится в ранние сроки заболевания при соблюдении правил, предотвращающих контаминацию материала посторонней микрофлорой и инфицирование медицинского персонала. Для предупреждения инактивации вирусов при транспортировке материала, он помещается в вирусную транспортировочную среду (ВТС), состоящую из сбалансированного солевого раствора, антибиотиков и сывороточного альбумина. Транспортируется материал в специальном контейнере с термоизоляцией и закрытыми пластиковыми пакетами, содержащими лед. При необходимости материал хранят при -20˚С. Каждый образец материала для исследования должен иметь маркировку и этикетку с

указанием фамилии больного, типа материала, даты его забора, развернутый клинический диагноз и другие сведения.

В зависимости от характера заболевания, материалом для исследования могут быть: 1) смывы с носовой части глотки и мазок из глотки; 2) спинномозговая жидкость; 3) кал и ректальные мазки; 4) кровь; 5) моча; 6) жидкость из серозных полостей; 7) мазок с конъюнктивы; 8) содержимое везикул; 8) секционный материал.

Для получения смыва из ротоглотки используют 15-20 мл ВТС. Больной тщательно в течение 1 минуты полощет горло ВТС и собирает смыв в стерильный флакон.

Мазок с задней стенки глотки берут стерильным ватным тампоном, надавливая на корень языка шпателем. Тампон помещают в 2-3 мл ВТС, ополаскивают и отжимают.

Спинномозговую жидкость получают при спинномозговой пункции. 1-2 мл спинномозговой жидкости помещают в стерильную посуду и доставляют в лабораторию.

Пробы кала отбирают в течение 2-3 дней в стерильные флаконы. Из полученного материала готовят 10 % суспензию с использованием раствора Хенкса. Суспензию центрифугируют при 3000 об/мин, собирают надосадочную жидкость, вносят в нее антибиотики и помещают в стерильную посуду.

Кровь, полученную при венепункции в объеме 5-10 мл, дефибринируют путем добавления гепарина. Цельную кровь не замораживают, антибиотики не добавляют. Для получения сыворотки пробы крови выдерживают в термостате при 37˚С в течение 60 минут.

Жидкость из серозных полостей получают при их пункции в количестве 1-2 мл. Жидкость используется сразу или сохраняется в замороженном состоянии.

Мазок с конъюнктивы берут стерильным тампоном и помещают в ВТС, после чего проводят центрифугирование взятого материала и его замораживание.

Содержимое везикул отсасывают шприцем с тонкой иглой и помещают в ВТС. Материал посылается в лабораторию в виде высушенных мазков на предметных стеклах или в запаянных стерильных капиллярах или ампулах.

Секционный материал отбирают в возможно ранние сроки, соблюдая правила асептики. Для отбора каждой пробы используют отдельные наборы стерильных инструментов. Количество отбираемых тканей составляет 1-3 г, которые помещают в стерильные флаконы. Вначале берут пробы внеполостных органов (мозг, лимфатические узлы и др.). Ткани грудной полости берут до вскрытия брюшной полости. Полученные образцы тканей растирают в ступке с добавлением стерильного песка и стерильного раствора натрия хлорид, после чего материал центрифугируют. Надосадочную жидкость собирают во флаконы, добавляют антибиотики. Материал для вирусологического исследования используется сразу или хранится при -20˚С.

2. Обработка вируссодержащего материала. Проводится с целью освобождения материала от сопутствующей бактериальной микрофлоры. Для этого используются физические и химические методы. Физические методы: 1) фильтрование через различные бактериальные фильтры; 2) центрифугирование. Химические методы: 1) обработка материала эфиром в случаях выделения вирусов, не имеющих суперкапсида; 2) добавление к материалу смеси гептана и фреона; 3) внесение антибиотиков (пенициллин – 200-300 ЕД/мл; стрептомицин – 200-500 мкг/мл; нистатин – 100-1000 ЕД/мл).

Лабораторные животные. Используются белые мыши, морские свинки, хомяки, кролики и др. Белые мыши наиболее чувствительны к большому числу видов вирусов. Способ заражения животных определяется тропизмом вируса к тканям. Заражение в мозг применяется при выделении нейротропных вирусов (вирусы бешенства, полиовирусы и др.). Интраназальное заражение проводят при выделении возбудителей респираторных инфекций. Широко используются внутримышечный, внутривенный, внутрибрюшинный,

подкожный и другие методы заражения. Заболевших животных усыпляют эфиром, вскрывают и производят забор материала из органов и тканей.

Куриные эмбрионы. Широко доступны и просты в работе. Применяют куриные эмбрионы в возрасте от 5 до 14 дней. Перед заражением куриные эмбрионы овоскопируют: определяют их жизнеспособность, отмечают на скорлупе границу воздушного мешка и месторасположение эмбриона («темный глаз» эмбриона). Работа с куриными эмбрионами проводится в стерильном боксе стерильными инструментами (пинцеты, шприцы, ножницы, копье и др.). После выполнения фрагмента работы инструменты погружают в 70 % этиловый спирт и перед следующей манипуляцией прожигают. Перед заражением скорлупу куриного эмбриона протирают горящим спиртовым тампоном и спиртовым раствором йода. Объем исследуемого материала, вводимого в эмбрион, составляет 0,1-0,2 мл. Для выделения вирусов из одного материала используют не менее 4 куриных эмбрионов.

5. Этапы взаимодействия вирусов с чувствительными клетками и факторы, способные их нарушать.

Взаимодействие вириона с живой клеткой осуществляется в несколько этапов. В начальный (подготовительный) период вирион прикрепляется к клетке, проникает внутрь ее, после чего белковая оболочка вириона разрушается, освобождая нуклеиновую к-ту (3). Наступает скрытый (латентный) период вирусной инфекции, во время к-рого присутствие в зараженной клетке вирусных частиц нельзя обнаружить никакими методами - родительский вирион как бы исчезает. В этот период проникшая в клетку вирусная нуклеиновая к-та организует синтез вирусных компонентов потомства, используя для этой цели ферментативную систему хозяина. Цикл размножения заканчивается формированием дочерних вирионов и выходом их из клетки (конечный период).

Более просто устроенные бактерии не способны сами захватывать частицы из окружающей среды. Поэтому у бактериофагов имеются спец. приспособления для преодоления плотной бактериальной стенки. В концевой части хвоста содержится особый фермент, к-рый растворяет бактериальную оболочку. Затем микроскопические «мышцы» хвоста сокращаются и нуклеиновая к-та фага «впрыскивается» внутрь клетки, происходит как бы инъекция с помощью шприца. В результате белковый чехол фага остается на поверхности клетки, а внутрь клетки попадает лишь нуклеиновая к-та.

Нуклеиновые к-ты В. осуществляют программу по созданию в клетке нового вирусного потомства. Это было доказано оригинальными опытами. Удалось разделить В. на составляющие их компоненты - белки и нуклеиновые к-ты. Оказалось, что заражение клеток и размножение В. происходило только после добавления к клеткам вирусной нуклеиновой к-ты. Иными словами, нуклеиновые к-ты В. сами по себе могут вызывать размножение В., т. е. обладают инфекционными свойствами. В другом опыте два В. были разделены на составляющие компоненты, а затем «переодеты»: нуклеиновую к-ту одного В. «одели» в оболочку другого. Полученными гибридами были заражены чувствительные клетки. Было обнаружено, что оба «переодетых» В. способны размножаться, а образующееся потомство всегда подобно тому В., нуклеиновую к-ту к-рого содержал гибрид.

Проникшая в клетку вирусная нуклеиновая к-та управляет всеми процессами размножения В. Сначала она заставляет клетку синтезировать так называемые ранние белки, подавляющие собственный обмен веществ клетки и обеспечивающие синтез нуклеиновых к-т дочерних частиц. Образование их происходит в результате самокопирования родительской нуклеиновой к-ты. Генетическая информация, заложенная в нуклеиновой к-те В., определяет состав белков, из к-рых строятся дочерние частицы так наз. поздних белков. В ДНК-со держащих В. реализация этой информации осуществляется обычным для клетки путем: на ДНК синтезируется информационная РНК (транскрипция), управляющая последующим биосинтезом белков (трансляция). В нуклеиновой к-те многих РНК-содержащих В. объединены и генетическая, и информационная функции: РНК участвует и в репликации, и в трансляции (в воспроизводстве нуклеиновых кислот и белка В.).

У многих В. построение белковых оболочек и внутреннего содержимого идет раздельно. Клетка «нарабатывает» отдельные детали, к-рые потом соединяются, образуя вирусные частицы. Когда в зараженной клетке накопится достаточное количество «заготовок > для будущих вирусных частиц, наступает как бы сборка деталей (композиция). Процесс этот происходит обычно вблизи клеточной оболочки, к-рая принимает в нем участие (4). В составе вирусной частицы часто обнаруживаются вещества, характерные для клетки, в к-рой размножается В. Напр., у В. гриппа заключительный этап формирования вирусной частицы - своеобразное обволакивание ее слоем клеточной мембраны. Т. о., клетка не только «кормит» и «поит» В., но на прощание еще и «одевает» их.

Последний этап взаимодействия В. и клетки, как правило, непродолжителен. Образовавшиеся полноценные вирусные частицы быстро выходят во внешнюю среду. Весьма своеобразно происходит выход потомства у бактериофагов. Он сопровождается обычно растворением (лизисом) бактериальных клеток под действием особого фермента, к-рый накапливается в клетке параллельно размножению фага и приводит ее к разрушению и гибели. Под микроскопом хорошо видно, как это происходит. Иногда бактерии как бы взрываются, в других случаях в бактерии (в середине или на одном из концов) образуется отверстие, через к-рое вытекает ее содержимое. Из одной погибшей бактерии может освободиться до нескольких сотен новых частиц фага. Процесс размножения фагов продолжается до тех пор, пока не будут уничтожены все чувствительные к этому фагу бактерии. Для В. оспы, полиомиелита, энцефалитов также характерен быстрый выход в окружающую среду сотен, а порой тысяч дочерних вирионов. Другие В. человека и животных (В. герпеса, свинки, реовирусы) выходят из клеток по мере созревания. Эти В. до момента гибели клеток успевают проделать несколько циклов размножения, постепенно истощая синтетические ресурсы клеток и вызывая их разрушение. В отдельных случаях В. могут накапливаться внутри клеток, образуя кристаллоподобные скопления (В. бешенства, аденовирусы и др.), к-рые называют тельцами включений (5). При гриппе, бешенстве, пситтакозе, оспе такие тельца обнаруживают в цитоплазме клеток, при весеннелетнем энцефалите, желтой лихорадке, герпесе и полиомиелите - в ядре; при нек-рых инфекциях тельца включений находили как в ядре, так и в цитоплазме. Исследования последних лет показали, что в подавляющем большинстве случаев эти включения представляют собой колонии В., причем их образование закономерно на определенной стадии размножения возбудителей инфекции. Высокая специфичность внутриклеточных включений при вирусных заболеваниях позволяет использовать этот признак для диагностики. Напр., обнаруженные в нервных клетках головного мозга ци-топлазматические включения (так наз. тельца Негри) являются основным доказательством заболевания бешенством, а специфич. образования круглой или овальной формы (так наз. тельца Гвар-ниери), обнаруженные в эпителиальных клетках, указывают на заболевание оспой. Включения описаны также при энцефалите, детском спинномозговом параличе, ящуре и других заболеваниях. Очень своеобразные включения, имеющие кристаллическую форму, образуют вирусы растений.

Т. о., размножение В. происходит особым, ни с чем не сравнимым способом. Сначала вирусные частицы проникают внутрь клеток и освобождаются вирусные нуклеиновые к-ты. Затем заготавливаются детали будущих вирусных частиц. Размножение заканчивается сборкой новых вирусных частиц и выходом их в окружающую среду. Выпадение любого из указанных этапов приводит к нарушению нормального цикла и влечет за собой либо полное подавление размножения В., либо появление неполноценного потомства.

Основные этапы взаимодействия вируса с клеткой хозяина.

1.Адсорбцияпусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппагемагглютинин, у вируса иммунодефицита человекагликопротеин gp 120).

2.Проникновениепутем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3.Освобождение нуклеиновых кислот- ―раздевание‖ нуклеокапсида и активация нуклеиновой кислоты.

4.Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5.Сборка вирионовассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6.Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

6. Формы вирусной инфекции.

На уровне макроорганизма основные формы вирусных поражений принципиально не отличаются от таковых, наблюдаемых при инфицировании вирусами отдельных клеток.

Продуктивная вирусная инфекция с образованием дочерних популяций и характерными клиническими проявлениями возможна лишь при наличии в заражённом организме чувствительных клеток, в которых осуществляется репродуктивный цикл возбудителя. Например, возбудитель полиомиелита может реплицировать только в клетках ЖКТ и ЦНС приматов и человека.

Абортивная инфекция развивается при проникновении возбудителя в нечувствительные клетки (например, при попадании вируса лейкоза коров в организм человека) либо в клетки, не способные обеспечить полный репродуктивный цикл (например, находящиеся в стадии клеточного цикла G0). Способность клеток к

поддержанию вирусспецифических репродуктивных процессов также подавляет ИФН, противовирусный эффект которого направлен против самых различных вирусов.

Персистирующая вирусная инфекция возникает при таком взаимодействии между вирусом и заражённой клеткой, когда в последней продолжается выполнение собственных клеточных функций. Если заражённые клетки делятся, образуется инфицированный клон. Таким образом, увеличение числа заражённых клеток способствует увеличению общей популяции возбудителя в организме. Тем не менее персистирующие вирусные инфекции обычно нарушают функции клеток, что в конце концов приводит к клиническим проявлениям. У человека развитие персисти-рующих инфекций в определённой степени зависит от возраста. Например, внутриутробное заражение вирусом коревой краснухи или цитомегаловирусом (ЦМВ) приводит к ограниченному по времени персистированию возбудителя. Появление симптоматики связано с возможностью плода развивать иммунные реакции на инфекционный агент.

Латентная (скрытая) вирусная инфекция. В то время как персистирующие инфекции сопровождаются постоянным высвобождением дочерних вирусных популяций, при латентных поражениях они образуются спорадически. Репродуктивный цикл подобных возбудителей резко замедляется на поздних стадиях и активируется под влиянием различных факторов. Латентные инфекции характерны для большинства герпесвирусов, вызывающих рецидивирующие и обычно не прогрессирующие заболевания. Инаппарантные инфекции *от лат. in-, отрицание, + арраrео, являться+ сопровождаются бессимптомной циркуляцией незначительных количеств возбудителя в отдельных органах. При этом выявить возбудителя можно лишь специальными методами. От бессимптомного носительства подобные поражения отличает большая вероятность возникновения клинических проявлений. Этот термин применяют при целом ряде инфекций, при которых нет явных признаков заболевания. В практике вирусных инфекций у человека часто применяют альтернативный термин «субклиническая инфекция». Собственно, и латентные инфекции можно расценивать как хронически протекающие инаппаратные инфекции, при которых устанавливается баланс между организмом и возбудителем.

Дремлющая (криптогенная) вирусная инфекция - форма проявления вирусной инфекции при которой возбудитель в неактивном состоянии находится в отдельных очагах (например, в нервных ганглиях). Клинически инфекция проявляется лишь при резком ослаблении защитных сил организма. Например, вирус герпеса 3 типа, вызывающий при первичном заражении ветряную оспу, пожизненно сохраняется в организме. Рецидив заболевания в форме опоясывающего лишая возможен лишь при нарушениях иммунного статуса (наиболее часто в пожилом возрасте).

Медленные вирусная инфекции характеризуются длительным инкубационным периодом (месяцы и годы), в течение которого возбудитель размножается, вызывая всё более явные повреждения тканей. Первоначально возбудитель размножается в ограниченной группе клеток, но постепенно инфицирует всё большее их число. Заболевания заканчиваются развитием тяжёлых поражений и смертью больного. К медленным вирусным инфекциям относят подострый склерозирующий панэнцефалит, ВИЧ-инфекцию и др.

7. Особенности противовирусного иммунитета.

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Сильными антигенпрезентирующими свойствами при вирусных инфекциях обладают дендритные клетки, а при простом герпесе и ретровирусных инфекциях – клетки Лангерганса.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные им. В этой связи выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами; это препятствует рецепции вируса клеткой и проникновению его внутрь. Опсонизация вируса с помощью антител способствует его фагоцитозу;

2) иммунный лизис инфицированных вирусом клеток с участием антител. При действии антител на антигены, экспрессированные на поверхности инфицированной клетки, к этому комплексу присоединяется комплемент с последующей его активацией, что и обуславливает индукцию комплементзависимой цитотоксичности и гибель инфицированной вирусом клетки.

Недостаточная концентрация антител может усиливать репродукцию вируса. Иногда антитела могут защищать вирус от действия протеолитических ферментов клетки, что при сохранении жизнеспособности вируса приводит к усилению его репликации.

Вируснейтрализующие антитела действуют непосредственно на вирус лишь в том случае, когда он, разрушив одну клетку, распространяется на другую.

Когда вирусы переходят из клетки в клетку по цитоплазматическим мостикам, не контактируя с циркулирующими антителами, то основную роль в становлении иммунитета играют клеточные механизмы, связанные прежде всего с действием специфических цитотоксических Т-лимфоцитов, Т-эффекторов и макрофагов. Цитотоксические Т-лимфоциты непосредственно контактируют с клеткой-мишенью, повышая ее проницаемость и вызывая осмотическое набухание, разрыв мембраны и выход содержимого в окружающую среду.

Механизм цитотоксического эффекта связан с активацией мембранных ферментных систем в зоне прилипания клеток, образованием цитоплазматических мостиков между клетками и действием лимфотоксина. Специфические Т-киллеры появляются уже через 1–3 дня после заражения организма вирусом, их активность достигает максимума через неделю, а затем медленно понижается.

Одним из факторов противовирусного иммунитета является интерферон. Он образуется в местах размножения вируса и вызывает специфическое торможение транскрипции вирусного генома и подавление трансляции вирусной мРНК, что препятствует накоплению вируса в клетке-мишени.

Стойкость противовирусного иммунитета вариабельна. При ряде инфекций (ветряной оспе, паротите, кори, краснухе) иммунитет достаточно стойкий, а повторные заболевания встречаются крайне редко. Менее стойкий иммунитет развивается при инфекциях дыхательных путей (гриппе) и кишечного тракта.

8. Интерфероны. Их роль в противовирусном иммунитете.

Интерферон (от лат. inter – взаимно и ferio – поражать) – фактор белковой природы, который обеспечивает противовирусный иммунитет. Интерферон выделяется клетками позвоночных животных (лимфоцитами и макрофагами) в ответ на действие индукторов (при их контакте с вирусами). Интерферон угнетает репродукцию вирусов путем уменьшения количества чувствительных к ним клеток. Механизм противовирусного действия интерферона связан, очевидно, с образованием некоторых метаболитов, которые угнетают синтез видоспецифических вирусных белков.

Образование интерферона, кроме действия вирусов, может индуцироваться некоторыми микроорганизмами и продуктами их жизнедеятельности, синтетическими полирибонуклеотидами и другими соединениями.

Особенностью интерферона является то, что он проявляет активность лишь в организмах, из которых он был выделен, т.е. является видовым фактором. Молекулярная масса интерферона зависит от вида животных, который его продуцирует, и составляет 13–170 тыс. Известно несколько видов интерферонов, среди которых наиболее важное значение имеют альфа-, бета- и гамма-интерфероны. В организме человека образуются в основном альфа1-, альфа2- и альфа3-интерфероны. Молекулярная масса их составляет 18–25 тыс., реже от 5,5 до 7,5 тыс. На N-конце молекул интерферонов, как правило, содержится остаток цистеина, который принимает участие в образовании дисульфидной связи, важной для их биологического действия. В настоящее время интерфероны эффективно используются для лечения вирусных, респираторных и инфекционных заболеваний. Внедрен микробиологический синтез интерферона с применением методов генной инженерии. Ген интерферона внедряют в геном бактерии E.coli, которая и обеспечивает его синтез.

У рыб, птиц, рептилий, как и у млекопитающих, обнаружены противовирусные вещества широкого спектра действия – интерфероны. Впервые они были обнаружены при изучении вирусной интерференции, когда животное, зараженное одним вирусом, устойчиво к заражению другим неродственным вирусом.

Типы интерферонов

Идентифицированы различные типы интерферонов; гены каждого из них клонированы. Существуют по меньшей мере 14 альфа-интерферонов, которые продуцируются лимфоцитами. Бета-интерфероны продуцируются фибробластами. Образование гамма-интерферонов не индуцируется вирусами.

Механизм противовирусного действия интерферонов

При вирусной инфекции клетки синтезируют интерферон и секретируют его в межклеточное пространство, где он связывается со специфическими рецепторами соседних незараженных клеток.

Связанный интерферон оказывает противовирусное действие следующим образом. В клетке, подвергшейся воздействию интерферона, депрессируются по меньшей мере два гена и начинается синтез двух ферментов.

Первый – протеинкиназа – фосфорилирует рибосомальный белок и фактор инициации, необходимый для синтеза белка, тем самым значительно снижая трансляцию мРНК.

Второй фермент катализирует образование короткого полимера адениловой кислоты, активирующего латентную эндонуклеазу, что приводит к деградации мРНК как вируса, так и хозяина.

9. Принципы профилактики вирусных инфекций. Группы применяемых препаратов при вирусных инфекциях.

Для активной искусственной профилактики вирусных инфекций, в том числе и для плановой профилактики, широко используются живые вирусные вакцины. Они стимулируют резистентность в месте входных ворот инфекции, образование антител и клеток-эффекторов, а также синтез интерферона.

Основные живые вирусные вакцины: гриппозная, коревая,

полиомиелитная (Сейбина-Смородинцева-Чумакова), паротитная, против коревой краснухи, антирабическая, против желтой лихорадки,

генно-инженерная вакцина против гепатита В - Энджерикс В.

Для профилактики вирусных инфекций используются и убитые вакцины: против клещевого энцефалита, омской геморрагической лихорадки, полиомиелита (Солка), гепатита А (Харвикс 1440),

антирабическая (ХДСВ, Пастер Мерье), а также и химические - гриппозные.

Для пассивной профилактики и иммунотерапии предложены следующие антительные препараты: противогриппозный гамма-глобулин, антирабический гамма-глобулин,

противокоревой гамма-глобулин для детей до 2 лет (в очагах) и для ослабленных детей старшего возраста, противогриппозная сыворотка с сульфаниламидами.

Универсальным средством пассивной профилактики вирусных инфекций являются интерферон и индукторы эндогенного интерферона.

Большинство известных химиотерапевтических препаратов не обладают противовирусной активностью, так как механизм действия большинства из них основан на подавлении микробного метаболизма, а у вирусов собственные метаболические системы отсутствуют. Антибиотики и сульфаниламиды при вирусных инфекциях используют только с целью профилактики бактериальных осложнений. Тем не менее в настоящее время разрабатываются и применяются химиотерапевтические средства, обладающие противовирусной активностью.

Первая группа - аномальные нуклеозиды. По строению они близки к нуклеотидам вирусных нуклеиновых кислот, но, включенные в состав нуклеиновой кислоты, они не обеспечивают ее нормальное функционирование. К таким препаратам относятся азидотимидин - препарат, активный в отношении вируса иммунодефицита человека (ВИЧинфекция). Недостаток этих препаратов - в высокой токсичности для клеток макроорганизма.

Вторая группа препаратов нарушает процессы абсорбции вирусов на клетках. Они менее токсичны, обладают высокой избирательностью и весьма перспективны. Это тиосемикарбозон и его производные, ацикловир (зовиракс) - герпетическая инфекция, ремантадин и его производные - грипп А и др.

Универсальным средством терапии, так же как и профилактики, вирусных инфекций является интерферон.

10. Серодиагностика вирусных инфекций, используемые реакции.

Серологические методы диагностики вирусных инфекций. Торможение гемагглютинации. Торможение цитопатического эффекта интерференцией вирусов. Прямая иммунофлюоресценция. Иммуноэлектронная микроскопия. При большинстве вирусных инфекций развиваются иммунные реакции, применяемые для диагностики. Клеточные реакции обычно оценивают в тестах цитотоксичности лимфоцитов в отношении инфекционных агентов или заражѐнных ими клетокмишеней либо определяют способность лимфоцитов отвечать на различные Аг и митогены. В работе практических лабораторий выраженность клеточных реакций определяют редко. Большее распространение нашли методы идентификации противовирусных AT. РН основана на подавлении цитопатогенного эффекта после смешивания вируса со специфичными AT. Неизвестный вирус смешивают с известными коммерческими антисыворотками и после соответствующей инкубации вносят в монослой клеток. Отсутствие гибели клеток указывает на несоответствие инфекционного агента и известных AT. Торможение гемагглютинации РТГА применяют для идентификации вирусов, способных агглютинировать различные эритроциты. Для этого смешивают культуральную среду, содержащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при еѐ отсутствии делают заключение о несоответствии вируса антисыворотке. Торможение цитопатического эффекта интерференцией вирусов Реакцию торможения цитопатического эффекта за счѐт интерференции вирусов применяют для идентификации возбудителя, интерферирующего с известным цитопатогенным вирусом в культуре чувствительных клеток. Для этого в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неѐ), инкубируют и заражают вторую культуру; через 1-2 дня в неѐ вносят известный цитопатогенный вирус (например, любой ЕСНО-вирус). При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим применѐнным AT. Прямая иммунофлюоресценция Среди прочих тестов наибольшее распространение нашла реакция прямой иммунофлюоресценции (наиболее быстрая, чувствительная и воспроизводимая). Например, идентификация ЦМВ по цитопатогенному эффекту требует не менее 2-3 нед, а при использовании меченых моноклона л ьных AT идентификация возможна уже через 24 ч. Имея набор подобных реагентов, их можно вносить в культуры, заражѐнные вирусом, инкубировать, отмывать несвязавшийся реагент и исследовать с помощью люминесцентной микроскопии (позволяет выявить наличие флюоресценции заражѐнных клеток). Иммуноэлектронная микроскопия Иммуноэлектронная микроскопия (аналог предыдущего метода) позволяет идентифицировать различные виды вирусов, выявленные электронной микроскопией (например, различные виды герпесвирусов), что невозможно сделать, основываясь на морфологических особенностях. Вместо антисывороток для идентификации используют помеченные разными способами AT, но сложность и дороговизна метода ограничивают его применение.

Выявление противовирусных антител (AT) в сыворотке крови. РТГА. РСК. РИФ. Иммуносорбционные методы выявления противовирусных антител. Более простой и доступный подход - выявление противовирусных антител (AT) в сыворотке. Образцы крови необходимо отбирать дважды: немедленно после появления клинических признаков и через 2~3 нед. Чрезвычайно важно исследовать именно два образца сыворотки. Результаты однократного исследования нельзя считать окончательными из-за невозможности связать появление AT с настоящим случаем. Вполне возможно, что эти AT циркулируют после предшествующей инфекции. В подобной ситуации роль исследования сыворотки, полученной в период рекон-валесценции, трудно переоценить. На наличие заболевания в период отбора первой пробы указывает не менее чем четырѐхкратное увеличение титра AT, выявленное при исследовании второй пробы. Перечисленные ниже методы не позволяют дифференцировать антитела (AT), образующиеся во время болезни и циркулирующие после выздоровления (продолжительность этого периода вариабельна для различных инфекций). Поскольку для адекватной диагностики необходимо подтвердить достоверное увеличение титров AT в двух пробах, то первую пробу исследуют в острой фазе, а вторую - в период выздоровления (через 2-3 нед). Полученные результаты носят ретроспективный характер и более пригодны для проведения эпидемиологических обследований. РТГА выявляет AT, синтезируемые против гемагглютининов вирусов (например, вируса гриппа). Метод позволяет легко выявлять подобные антитела (AT) в сыворотке больного. РСК - основной метод серодиагностики вирусных инфекций (среди доступных). Реакция выявляет комплементсвязывающие IgM и IgG, но не дифференцирует их; для оптимизации получаемых результатов постановка реакции требует определѐнных навыков персонала. РИФ. При возможности получить биоптат инфицированной ткани и доступности коммерческих наборов AT,

Микробиология: конспект лекций Ткаченко Ксения Викторовна

2. Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.

Из книги Генетика окрасов собак автора Робинсон Рой

Взаимодействие локусов А и Е Важность этих двух серий аллелей будет показана в данном разделе. Обе серии контролируют распределение черного и желтого пигментов по шерсти у большинства пород собак. Во взаимодействии эти локусы образуют множество хорошо известных

Из книги Микробиология автора Ткаченко Ксения Викторовна

10. Морфология вирусов, типы взаимодействия вируса с клеткой Вирусы – микроорганизмы, составляющие царство Vira.Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).По форме вирионы могут быть: округлыми, палочковидными, в виде

Из книги Беседы о новой иммунологии автора Петров Рэм Викторович

Что это за плазматические клетки, вырабатывающие антитела, и можно ли плазматическую клетку считать самой главной клеткой иммунной системы? - Что это за плазматические клетки, вырабатывающие антитела? О них уже знали во времена Мечникова или это более позднее

Из книги Муравей, семья, колония автора Захаров Анатолий Александрович

ВЗАИМОДЕЙСТВИЕ МУРАВЬЕВ В СЕМЬЕ Семья муравьев - объединение сотен, тысяч, а иногда и миллионов индивидов, усилиями которых сооружается гнездо, выкармливается многочисленное потомство, охраняется муравейник и его кормовой участок от посягательств агрессивных

Из книги Диагностика и коррекция отклоняющегося поведения у собак автора Никольская Анастасия Всеволодовна

2.2.4. Определение способа взаимодействия хозяина с собакой Поскольку зачастую установлением причины девиантного поведения животного занимается врач-ветеринар общего профиля, который не обладает профессиональной психологической подготовкой, автором предлагается тест,

Из книги Род человеческий автора Барнетт Энтони

Взаимодействие наследственности и среды Иногда спрашивают: что важнее - наследственность или окружающая среда? На этот вопрос не так легко ответить. Если под этим подразумевать, чт? имеет наибольшую силу воздействия, то и тогда следует ограничиться частными случаями.

Из книги Рассказ предка [Путешествие к заре жизни] автора Докинз Клинтон Ричард

ВОЗВРАЩЕНИЕ ХОЗЯИНА Приветливый хозяин, ведущий Чосера и других странников из Лондона в Кентербери, и бывший посредником в их рассказах, повернул назад и привел их обратно к Лондону. Если я теперь возвращаюсь к современности, то исключительно потому, что следование одним

Из книги Основы психофизиологии автора Александров Юрий

Прощание Хозяина Если по возвращении хозяина я размышляю обо всем путешествии, благодарным участником которого я был, моей непреодолимой реакцией является что-то вроде изумления. Изумление не только от феерии деталей, которые мы увидели; изумление также от самого факта,

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

7. ВЗАИМОДЕЙСТВИЕ СЕНСОРНЫХ СИСТЕМ Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в ретикулярной формации. В коре мозга происходит интеграция сигналов высшего порядка. В

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Взаимодействие и интеграция В наши дни посетители музеев воспринимают выставленные в них смонтированные скелеты огромных вымерших животных как нечто само собой разумеющееся. Однако так было не всегда. Научные сведения о таких импозантных формах, как мамонты и

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

Из книги Рассказ предка [Паломничество к истокам жизни] автора Докинз Клинтон Ричард

9.7. Заключительные замечания (взаимодействие в биоценозах) Рассмотрим биохимические взаимодействия живых организмов в естественных условиях, которые распространены чрезвычайно широко и стали объектом специальной науки - аллелопатии (см. гл. 1). Примеры таких

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

Возвращение Хозяина Трактирщик, сопровождавший Чосера и других пилигримов в Кентербери и исполнивший роль импресарио, привел их обратно в Лондон. И если я теперь вернусь в настоящее, оно должно быть иным: ожидание того, что эволюция дважды проследует одним путем,

Из книги автора

Прощание Хозяина Я восхищаюсь паломничеством, в котором сам с благодарностью участвовал. Восхищение у меня вызывает не только торжество жизни, но и то обстоятельство, что на некоей планете вообще может существовать жизнь. Вселенная могла бы остаться безжизненной, с

Из книги автора

4.3. Взаимодействие генов В организме одновременно функционирует множество генов. В процессах реализации генетической информации в признак возможны многочисленные «пункты» взаимодействия разных генов на уровне биохимических реакций. Такие взаимодействия неизбежно

Из книги автора

4.4. Взаимодействие генотипа и среды Природа проявления действия генов намного сложнее, чем в описанных выше вариантах. Рассматривая действие генов и их аллелей, необходимо учитывать влияние внешней среды на проявление признаков, а также модифицирующее действие других

В отличие от про- и эукариотических микроорганизмов вирусы не размножаются бинарным делением. В 50-х годах было установлено, что вирусы размножаются путем репродукции, т.е.воспроизведения их нуклеиновых кислот и синтеза белков «клеткой-хозяином»с последующей сборкой вирионов. Эти процессы происходят в разных частях клетки-хозяина, например в ядре и цитоплазме. Такой разобщенный способ репродукции получил название дизъюнктивного.

Вирусная репродукция, хотя и осуществляется согласно триаде ДНК РНК белок, представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека, животных, насекомых, растений, бактерий. Эта уникальность состоит прежде всего в подчинении клеточных матрично-генетических механизмов вирусной информации.

Поскольку вирусы не имеют собственного метаболизма, они не нуждаются в ферментах, необходимых для многочисленных катаболических и анаболических реакций. Однако у вирусов обнаружено свыше 10 ферментов, разных по своему происхождению и функциональному назначению.

По происхождению вирусные ферменты делятся на три группы:

1. вирионные - входят в состав вирионов;

2. вирусиндуцированные - ферменты, структура которых закодирована в геноме вируса, а синтез происходит на рибосомах клетки-хозяина;

3. клеточные , модифицированные вирусом - это ферменты клетки-хозяина, которые не являются вирусспецифическими и которые участвуют в репродукции вируса.

По функциональному значению вирусные ферменты можно подразделить на 2 группы:

1) ферменты, участвующие в процессе репликации и транскрипции вирусной нуклеиновой кислоты;

2) ферменты, способствующие проникновению вирусной НК в клетку-хозяина и выходу образовавшихся вирионов.

Известны три типа взаимодействия вируса с клеткой:

1) продуктивный ти п, завершающийся образованием вирусного потомства;

2) абортивный тип , не завершающийся образованием новых вирусных частиц, поскольку инфекционный процесс прерывается на одном из этапов;

3) интегративный тип(или вирогения), характеризующийся встраиванием вирусной ДНК в хромосому клетки-хозяина.

ПРОДУКТИВНЫЙ ТИП взаимодействия (репродукция вирусов) осуществляется в несколько стадий, последовательно сменяющих друг друга:

1. Адсорбция вируса на клетке , т.е. прикрепление вирусов к поверхности клетки. Вирус адсорбируется на клеточных рецепторах разной химической природы (белки, углеводные компоненты белков и липидов, липиды), число которых на поверхности одной клетки колеблется между 10 4 и 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц. Поверхностные структуры вируса, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Соответствие (комплементарность) клеточных рецепторов вирусным прикрепительным белкам определяет возможность возникновения инфекционного процесса в клетке; от этого зависят спектр клеток, поражаемых вирусом, или его тропизм, и в ряде случаев, чувствительность организма к данному вирусу.

2. Проникновение вируса в клетку: существует два способа проникновения вирусов животных в клетку: виропексис и слияниевирусной оболочки с клеточной мембраной.

При виропексисе, после адсорбции вирусов, происходит инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки.

Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочек.

По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

3. «Раздевание» вируса: процесс заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, а конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота.

4. Биосинтез компонентов вируса; проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генети-ческой информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т.е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дизъюнктивным (разобщенным).

5. Формирование (сборка) вирионов: синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодейст-вуют белки суперкапсидных оболочек (например, вирусы гриппа). Формирование вирусов происходит на ядерных или цитоплазматических мембранах клетки.

6. Выход вирусов из клетки: различают 2 основных типа выхода вирусного потомства из клетки:

а) взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой тип выхода характерен для вирусов, не имеющих суперкапсида.

б) почкование - он присущ вирусам, имеющим суперкапсид. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 часов (вирусы гриппа, натуральной оспы) до нескольких суток (вирусы кори, аденовирусы). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

ИНТЕГРАТИВНЫЙ ТИП ВЗАИМОДЕЙСТВИЯ (ВИРОГЕНИЯ) характеризуется встраиванием (интеграцией) нуклеиновой кислоты вируса в хромосому клетки. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома.

Интеграция вирусного генетического материала с ДНК клетки характерна для определенных групп вирусов: бактериофагов, онкогенных (опухолеродных) вирусов, вируса гепатита В, вирус герпеса, ВИЧ.

Для интеграции с хромосомой клетки необходима кольцевая форма двунитчатой вирусной ДНК. У ДНК-содержащих вирусов (вирус гепатита В) их ДНК обладает свойством встраиваться в геном клетки при участии ряда ферментов. У некоторых РНК-содержащих вирусов (ВИЧ, онкогенные вирусы) сначала на матрице РНК с помощью вирусспецифического фермента синтезируется ДНК-копия, которая затем встраивается в ДНК клетки. ДНК вируса, находящаяся в составе хромосомы клетки, называется ДНК-провирусом.

При делении клетки, сохраняющей свои нормальные функции, ДНК-провирус переходит в геном дочерних клеток, т.е. состояние вирогении наследуется. ДНК-провирус несет дополнительную генетическую информацию, в результате чего клетка приобретает ряд новых свойств. Так, интеграция может явиться причиной возникновения ряда аутоиммунных и хронических заболеваний, разнообразных опухолей. Под воздействием ряда физических и химических факторов ДНК-провирус может вырезаться из клеточной хромосомы и переходить в автономное состояние, включаясь в обычный цикл репродукции.

ВИРУСОЛОГИЯ

Лекция №2

Возможность взаимодействия вируса и клетки обусловлены генетическими особенностями вируса и клетки. Условия среды определяют исход этого взаимодействия.

Типы взаимодействия:

1) Продуктивная вирусная инфекция

Клетка погибает, происходит репродукция вирусов;

2) Абортивная вирусная инфекция

Клетка не погибает, репродукции вирусов нет;

3) Латентная вирусная инфекция

репродукция вирусов и сохранение жизнеспособности клетки; органы и ткани, построенные из таких клеток, сохраняют свою функциональную активность;

4) Вирус-индуцированные трансформации

Клетки, инфицированные вирусом, приобретают новые, ранее не присущие им свойства; происходит репродукция вирусов.

Продуктивная вирусная инфекция

Лежит в основе развития острых вирусных инфекций. Сопровождается гибелью клетки и репродукцией вирусов. Условно делится на периоды→фазы→этапы.

I. Начальный период

1. Фаза адсорбции

а) неспецифическая адсорбция

действуют силы межмолекулярного взаимодействия (электростатические силы, ван-дер-ваальсовы силы); осуществляется за счет сродства химических группировок; она непрочная, непродолжительная; если смесь вируса и клетки встряхнуть, то эта связь может нарушиться;

б) специфическая адсорбция

в основе – химическое сродство рецепторных белков вириона и рецепторов соответствующей клетки;

за счет этих рецепторов вирусы поражают строго определенные клетки (например, вирус гриппа поражает эпителий верхних дыхательных путей).

Таким образом специфическая адсорбция лежит в основе тропизма вирусов.

Рецепторы вирусов настолько специфичны, что они различны даже для близкородственных вирусов.

Факторы, влияющие на адсорбцию:

– множественность инфекции

(количество вирионов на одну чувствительную клетку);

– наличие электролитов

(в среде, богатой электролитами, адсорбция идет эффективнее);

– суспензия или пласт клеток и т.п.

(в суспензии адсорбция идет лучше, так как больше площадь взаимодействия);

– температура

(при снижении температуры адсорбция снижается, при повышении температуры адсорбция повышается);

– наличие ПАВ

(антитела, лекарственные вещества и т.п. угнетают развитие адсорбции);

– гормональный фон

(в условиях макроорганизма;

например: гормон паращитовидной железы снижает эффективность адсорбции, гормон щитовидной железы – повышает).

Процесс адсорбции протекает за короткий промежуток времени. Через 15-20 минут она становится специфичной.


2. Фаза проникновения вирионов в клетку

Первый способ проникновения самый простой и наиболее частый – виропексис (фагоцитоз) – в клетках, обладающих фагоцитарной активностью: макрофаги, нейтрофильные лейкоциты.

На месте адсорбции вириона образуется инвагинация→края мембраны слипаются → вирион оказывается в клетке, окруженный частью клеточной мембраны. Формируется фагосома, которая сливается с клеточными лизосомами и формируется фаголизосома, внутри которой находится вирион. Лизосомальные ферменты начинают разрушать белковую оболочку вириона (депротеинизация), что приводит к освобождению нуклеиновой кислоты.

Второй способ проникновения в клетку:

Фаги впрыскивают свою нуклеиновую кислоту в клетку;

Третий способ проникновения:

Некоторые вирусы на своей поверхности имеют ферменты, расщепляющие компоненты клеточной стенки (нейраминидаза вируса) → образуется отверстие, через которое нуклеиновая кислота попадает в клетку.

3. Фаза депротеинизации

Процесс разрушения белковых оболочек, «раздевание» вируса и освобождение нуклеиновой кислоты.

Не всегда эти процессы идут в такой последовательности. Например, у сложных вирусов депротеинизация начинается с момента адсорбции.

В конце начального периода образуется уникальная биологическая система: клетка, в которой есть собственный геном + нуклеиновая кислота (геном) вируса и один синтетический аппарат → «двоевластие». Это крайне неустойчивая структура.

Если клетка разрушает вирусную нуклеиновую кислоту → сохранение клетки – абортивная вирусная инфекция.

II. Средний период

1. Фаза синтеза ранних «вирусных» белков-ферментов

наступает после высвобождения вирусного генома. Клеточнообусловленные синтезы снижаются на 60% Происходит репрессия клеточного генома и активация вирусного. Начинается с синтеза ранних «вирусных» белков (РВБ).

РВБ – белки, которые обеспечивают подавление клеточного генома.

В норме часть клеточных генов не функционирует, т.к. в клетке есть группа генов, ответственных за синтез регуляторного белка гистона. В ходе взаимодействия вируса и клетки вирусная нуклеиновая кислота активирует гены, ответственные за синтез гистонов, что ведет к подавлению функций клеточного генома. Если клеточный геном подавляется → «двоевластие» заканчивается → формируется биологическая структура, представленная клеточным синтетическим аппаратом и геномом вируса. Теперь клетка не способна на синтез собственных макромолекул. Произошла смена генетической информации – СИ-фаза.

2. Фаза репликации вирусной нуклеиновой кислоты

Двунитевые ДНК

нити расплетаются → на матрице каждой нити формируются дочерние молекулы двуцепочечной вирусной ДНК с участием клеточной ДНК-зависимой ДНК-полимеразы.

Однонитевые ДНК

синтез дочерних молекул на материнской ДНК происходить не может (т.к. способна синтезироваться только комплементарная ДНК). Поэтому на матрице материнской ДНК сначала синтезируется комплементарная нить (репликативная форма), которая служит основой для синтеза дочерних ДНК.

Вирусная РНК может быть в двух формах:

I функционально тождественна иРНК клеток, т.е. идет на рибосомы и обеспечивает синтез белка. Это «+» нить. У «+» РНК в процессе репликации синтезируется «-» нить (репликативная форма), которая служит матрицей для синтеза дочерних молекул «+» нити. Синтез РНК на матрице РНК осуществляет уникальный фермент РНК-зависимая РНК-полимераза – геномный фермент.

II форма - «-» нить - не может служить матрицей для синтеза белка (не выполняет функции иРНК). На матрице этих «-» нитей синтезируется «+» нить (промежуточная), которая идет на рибосомы, где участвует в синтезе белка. Она же является матрицей для синтеза «-» нитей РНК, которые войдут в состав новых вирионов.

Ретровирусы – РНК-вирусы. У них реализация генетической информации идет по схеме РНК → ДНК → РНК → белок и осуществляется при участии уникального фермента обратной транскриптазы (ревертаза, РНК-зависимая ДНК-полимераза).

3. Фаза синтеза вирусных белков

т.к. клеточный геном подавлен, клетка начинает воспроизводить вирусные белки. Репликация нуклеиновой кислоты происходит в ядре клетки, а синтез белка на рибосомах. Первый процесс предшествует второму, т.е. они разобщены во времени и пространстве – дисъюнктивный способ репродукции вирусов.

III. Заключительный период

Фаза 1. Сборка новых вирионов

При этом формируются как полноценные, так и дефектные вирионы-«пустышки»)– не содержат нуклеиновой кислоты.

Фаза 2. Выход из клетки

Вновь собранные вирионы покидают инфицированную клетку.

Механизмы:

1. Клеточный геном погиб → гибель и разрушение клетки → вирионы выходят в межклеточное пространство;

2. Механизм обратного виропексиса (≈экзоцитоз)

Новые вирионы подходят к клеточной мембране → вытягивание → разрыв мебраны. В ходе этого процесса новые вирионы могут включить в состав своих суперкапсидных структур элементы клетки-хозяина.

Время репликации у разных вирусов различно. У фагов 30-40 минут, у некоторых вирусов человека – десятки часов. В результате одного цикла может образовываться от нескольких десятков до нескольких тысяч новых вирионов - «урожайность» вирусов.

Латентные вирусные инфекции - лежат в основе медленных вирусных инфекций. Это большая группа заболеваний человека и животных. Они протекают длительно, десятилетиями, без клинических проявлений, но неизбежно прогрессируют и заканчиваются летально. К ним относятся рассеянный склероз, амиотрофический склероз, прогрессирующий склерозирующий панэнцефалит. И другие.

Два типа латентных вирусных инфекций:

Безусловная (абсолютная) – все клетки органа или ткани поражены вирусом. Выделить клон свободных от вирусов клеток не удается. Но в пораженных клетках клеточный и вирусный геномы сосуществуют: 95-98% синтеза в такой клетке детерминированы клеточным геномом, а 2-5% - вирусным. Однако это соотношение непостоянно и может сдвигаться в пользу вирусных и тогда – клиническое проявление. А т.к. поражены все клетки органа и ткани, то они все перестают функционировать. Как они сосуществуют? Если не вся, то часть ДНК вируса встраивается в геном клетки. Если РНК, то она существует наряду с другими РНК этой клетки.

Условная или относительная – вирусом поражены единичные клетки ткани или органа, в них инфекция протекает по продуктиному типу, но т.к. поражены единичные клетки, то ткань или орган в целом сохраняют свою функцию. Почему поражаются отдельные клетки? Различная клональная структурная организация. Невысокая урожайность. Существует целый ряд ингибиторов, которые препятствуют распространению вирусной инфекции на все клетки.

Такой тип взаимодействия может быть нарушен на любом этапе до фазы смены информации → формируется абортивная вирусная инфекция.

Оглавление темы "Типы микроорганизмов. Вирусы. Вирион.":
1. Микроорганизмы. Типы микроорганизмов. Классификация микроорганизмов. Прионы.
2. Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.
3. Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида.
4. Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки (М-белки) вирусов. Репродукция вирусов.

6. Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.
7. Проникновение вируса в клетку. Виропексис. Раздевание вируса. Теневая фаза (фаза эклипса) репродукции вирусов. Образование вирусных частиц.
8. Транскрипция вируса в клетке. Трансляция вирусов.
9. Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

Известны следующие типы взаимодействий «вирус-клетка »: продуктивный (образуется дочерняя популяция), интегративный (вирогения ), абортивный (дочерняя популяция не образуется) и интерференция вирусов (инфицирование чувствительной клетки разными вирусами).

Продуктивное взаимодействие «вирус-клетка» чаще носит литический характер, то есть заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции. Гибель клетки вызывают следующие факторы: раннее подавление синтеза клеточных белков, накопление токсических и повреждающих клетку вирусных компонентов, повреждение лизосом и высвобождение их ферментов в цитоплазму.

Интегративное взаимодействие , или вирогения , не приводит к гибели клетки. Нуклеиновая кислота вируса встраивается в геном клетки-хозяина и в последующем функционирует как его составная часть. Наиболее яркие примеры подобного взаимодействия - лизогения бактерий и вирусная трансформация клеток.

Абортивное взаимодействие не приводит к появлению дочерней популяции и происходит при взаимодействии вируса с покоящейся клеткой (стадия клеточного цикла G0) либо при инфицировании клетки вирусом с изменёнными (дефектными) свойствами. Следует различать дефектные вирусы и дефектные вирионы. Первые существуют как самостоятельные виды и функционально неполноценны, так как для их репликации необходим «вирус-помощник» (например, для репликации аденоассоциированного вируса необходимо присутствие аденовирусов). Вторые составляют дефектную группу, формирующуюся при образовании больших дочерних популяций (например, могут образовываться пустые капсиды либо безоболочечные нуклео-капсиды). Особая форма дефектных вирионов - псевдовирионы, включившие в капсид нуклеиновую кислоту клетки-хозяина.


Интерференция вирусов происходит при инфицировании клетки двумя вирусами. Различают гомологичную (при инфицировании клетки родственными вирусами) и гетерологичную (если интерферируют неродственные виды) интерференцию. Это явление возникает не при всякой комбинации возбудителей, иногда два разных вируса могут репродуцироваться одновременно (например, вирусы кори и полиомиелита). Интерференция реализуется либо за счёт индукции одним вирусом клеточных ингибиторов (например, ИФН), подавляющих репродукцию другого, либо за счёт повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго.

Последние материалы раздела:

HTML: основы для начинающих Учим язык html с нуля
HTML: основы для начинающих Учим язык html с нуля

Я решил уделить больше внимания новичкам, желающим приобрести знания в области сайтостроения. На это меня подтолкнула моя преподавательница,...

Личный кабинет Biglion (Биглион)
Личный кабинет Biglion (Биглион)

Биглион – сервис для экономного шопинга. Он предоставляет миллионам пользователей купоны и дисконты в размере 50-90% на приобретение самых...

Как установить Camtasia Studio?
Как установить Camtasia Studio?

Программой Camtasia Studio 8 можно воспользоваться для записи видео рабочего стола. Программа располагает огромным функционалом, позволяющим...