Закон Ома для «чайников»: понятие, формула, объяснение. Активное, емкостное и индуктивное сопротивление. Закон Ома для цепей переменного тока Закон ома для емкостного сопротивления

Закон Ома – простой и мощный математический инструмент, помогающий анализировать электрические схемы. Он лучше всего используется для понимания взаимосвязи между временными характеристиками цепи. Однако ему присущи некоторые ограничения. Следует понимать подобные ограничения, чтобы правильно использовать правило в реальных схемах.

Согласно данному канону, ток увеличивается с увеличением напряжения. При фиксированном напряжении изменение сопротивления приводит к обратно пропорциональному изменению тока. Данное правило справедливо для сети только с активным сопротивлением.

Для информации. К этому принципу физики должно быть «конститутивное отношение», означающее только предположение, что некоторые материалы или даже вакуум поддерживают линейную вольт-амперную характеристику цепи. На самом же деле этого не может быть, поскольку нет такого понятия, как чистое сопротивление. Имеется в виду просто математическое упрощение. Каждому реальному резистору свойственна небольшая реальная индуктивность и емкость, и связанное с ними … сопротивление изменяется с температурой.

Закон Ома

Для участка контура

Фундаментальное правило физики имеет формулировку для цепей постоянного тока и не сопровождается нелинейными нагрузками, такими как транзисторы, диоды, конденсаторы. Переменный ток подчиняется данному правилу, но вместо известной формулы:

I = U/ R, где:

  • I – ток через проводник в единицах «ампер»,
  • U – напряжение, измеренное через проводник в единицах «вольт»,
  • R – противодействующее сопротивление проводника в единицах «Ом»;

используется формула для расчета:

I = U / Z, где:

Z – импеданс контура.

Импеданс – это противодействие потоку электрических зарядов.

Линейная зависимость, описываемая данной функцией, на самом деле является исключением в природе. Закон применяется только при довольно ограниченном наборе условий (постоянной температуре, металлических проводниках с постоянными напряжениями).

В действительности вольт-амперное соотношение внутри физического материала обычно сложное и нелинейное. Различные нелинейные математические модели могут применяться только при четко определенных диапазонах напряжений, полярностях и температурах.

Для различных цепей

Когда резисторы (или лампочки) подключаются последовательно (серия), один и тот же ток проходит через каждый из них. При параллельной проводке токи не связаны друг с другом и определяются значением каждого резистора. В каждом случае величина тока определяется законом Ома:

  • для последовательной схемы сопротивления складываются вместе,
  • для параллельной схемы они берутся отдельно, и суммируется ток.

Математика последовательных соединений проще. Сопротивления в параллельных или более сложных конфигурациях требуют сведения к одному значению сопротивления.

Для высокого напряжения

Найти объекты, которые эмулируют резисторы на очень высокой частоте, довольно трудно. Если построить график U / I, то у большинства материалов под высоким напряжением графическая характеристика будет представлена непрямой линией. Такие материалы не подчиняются классическому закону физики.

Если есть возможность определить мгновенные значения для напряжения V и сопротивления R, то можно рассчитать мгновенный переменный ток. Получить такую величину весьма нелегко, и, следовательно, используются другие подходы, такие, как расчет по формуле со значениями реактивных составляющих и импеданса. Если амплитуда синусоиды сигнала от пика до пика находится в линейном диапазоне, то этот материал подчиняется закону Ома.

Важно! При высокой температуре закон Ома неприменим, потому что с увеличением температуры с течением времени сопротивление возрастает, из-за чего линейная зависимость между напряжением и током (как описано законом Ома) больше не существует. И ток начинает уменьшаться только из-за прироста сопротивления проводника.

Закон Ома для полной цепи

Замкнутый электрический контур делится на внешний и внутренний участки. Первый включает в себя разные сопротивления нагрузки, второй – сопротивление источника тока. В цепи ток течет как по внешнему и внутреннему контуру цепи.

Формула расчета физических параметров для полной цепи будет следующая:

I = E/R+r, где:

  • E – ЭДС источника,
  • R – сопротивление нагрузки,
  • r – сопротивление источника тока.

Из данного соотношения видно, что, когда внешнее сопротивление становится меньше внутреннего, получается короткое замыкание.

Для информации. Закон Ома для переменного тока называется так из-за его формальной математической аналогии с основным правилом физики. По своей сути, это не должно противоречить канону физики, хотя под ним подразумеваются более сложные физические отношения.

Закон Ома для цепи переменного тока трактуется в иных формулах, нежели для постоянного тока. Поскольку в схеме имеются некоторые распределенные емкость и индуктивность, то правило физики формулируется в терминах импеданса, комплекснозначной функции частоты. Это позволяет охватить большинство случаев.

Видео

После открытия в 1831 году Фарадеем электромагнитной индукции, появились первые генераторы постоянного, а после и переменного тока. Преимущество последних заключается в том, что переменный ток передается потребителю с меньшими потерями.

При увеличении напряжения в цепи, ток будет увеличиваться аналогично случаю с постоянным током. Но в цепи переменного тока сопротивление оказывается катушкой индуктивности и конденсатор. Основываясь на этом, запишем закон Ома для переменного тока: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

  • I [А] – сила тока,
  • U [В] – напряжение,
  • Z [Ом] – полное сопротивление цепи.

Полное сопротивление цепи

В общем случае полное сопротивление цепи переменного тока (рис. 1) состоит из активного (R [Ом]), индуктивного, и емкостного сопротивлений. Иными словами, ток в цепи переменного тока зависит не только от активного омического сопротивления, но и от величины емкости (C [Ф]) и индуктивности (L [Гн]). Полное сопротивление цепи переменного тока можно вычислить по формуле:

где

Полное сопротивление цепи переменного тока можно изобразить графически как гипотенузу прямоугольного треугольника, у которого катетами являются активное и индуктивное сопротивления.

Рис.1. Треугольник сопротивлений

Учитывая последние равенства, запишем формулу закона Ома для переменного тока:

– амплитудное значение силы тока.

Рис.2. Последовательная электрическая цепь из R, L, C элементов.

Из опыта можно определить, что в такой цепи колебания тока и напряжения не совпадают по фазе, а разность фаз между этими величинами зависит от индуктивности катушки и емкости конденсатора.

Были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности: R I R = U R ; 1 ω C I C = U C ; ω L I L = U L .

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений .

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R , L и C . Физические величины R , 1 ω C и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J ċ u . Практический интерес представляет среднее за период переменного тока значение мощности P = P ср = I 0 U 0 cos ω t cos (ω t + φ) ¯ .

Здесь I 0 и U 0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R , то фазовый сдвиг φ = 0 : P R = I R U R cos 2 ω t ¯ = I R U R 2 = I R 2 R 2 .

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения: I д = I 0 2 ; U д = U 0 2 .

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна P R = I д U д.

Если участок цепи содержит только конденсатор емкости C , то фазовый сдвиг между током и напряжением φ = π 2 . Поэтому P C = I C U C cos ω t cos (ω t + π 2) ¯ = I C U C cos ω t (- sin ω t) ¯ = 0.

Аналогично можно показать, что P L = 0 .

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J (t) = I 0 cos ωt; e (t) = 0 cos (ωt + φ) .

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна P = I 0 ℰ 0 cos ω t cos (ω t + φ) ¯ = I 0 ℰ 0 2 cos φ = I д ℰ д cos φ .

Как видно из векторной диаграммы, U R = 0 · cos φ , поэтому P = I 0 U R 2 . Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I 0 и напряжения ℰ 0 для последовательной RLC -цепи: I 0 = ℰ 0 R 2 + (ω L - 1 ω C) 2 .

Величину Z = R 2 + (ω L - 1 ω C) 2 называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI 0 = 0 .

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC -контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).

Параллельный RLC -контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R , C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока . Векторная диаграмма для параллельного RLC -контура изображена на рис. 2.4.2.

Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует: I 0 = ℰ 0 (1 R) 2 + (ω L - 1 ω C) 2 .

Поэтому полное сопротивление параллельного RLC -контура выражается соотношением Z = 1 (1 R) 2 + (ω L - 1 ω C) 2 .

При параллельном резонансе (ω 2 = 1 / LC ) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора: Z = Z max = R .

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.

Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.

Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.

Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.

Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.

В результате нового эксперимента Ом пришел к формуле:

Х = a / b + l

Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.

Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи .

Закон Ома для участка цепи

Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.

I = U / R

Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.

Таким образом формула для расчета сопротивления проводника примет вид:

R = p ⋅ l / s

Закон Ома для полной цепи

Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:

I = U / R + r

Закон Ома для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Сфера применения

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.

Цепи постоянного тока     Прежде чем изучать закон Ома рассмотрим две схемы включения сопротивлений. На рисунке 1 показана схема последовательного включения сопротивлений, а на рисунке 2 схема параллельного включения сопротивлений.
Разберемся, как рассчитать суммарное сопротивление цепи (такое сопротивление которым можно заменить цепь из сопротивлений - назовем его Re).
Для сопротивлений включенных последовательно суммарное сопротивление равно сумме сопротивлений цепи.

Это очевидно, так как входной ток I протекает последовательно через все сопротивления (ток IR) и не меняется. При любом количестве последовательно включенных сопротивлений, для получения суммарного сопротивления, они складываются.
    При параллельном включении сопротивлений входной ток I разветвляется на отдельные токи I1, I2,..., In-1, In которые зависят от величины сопротивлений по которым они протекают.

Если сопротивления имеют разную величину, то и токи проходящие через них также будут различны. Суммарное сопротивление двух параллельно включенных сопротивлений рассчитывается по формуле: 1/Re = 1/R1 + 1/R2 или Re = (R1*R2) / (R1+R2). Если сопротивлений больше двух, то суммарное сопротивление рассчитывается по формуле показанной на рисунке.

Закон Ома для цепей постоянного тока Простейшая электрическая цепь это источник питания (GB1 на рисунке) и сопротивление нагрузки R. Данная электрическая цепь характеризуется тремя основными параметрами, это ток I проходящий через сопротивление нагрузки, напряжение источника питания U и сопротивление нагрузки R.
По закону Ома любой из этих трех параметров можно рассчитать по формулам показанным на рисунке.

Все три параметра имеют между собой линейную зависимость. Например, увеличение сопротивления нагрузки приводит к пропорциональному уменьшению тока в цепи.
Мы знаем, что ток проходящий через сопротивление нагрузки нагревает нагрузку, например электропаяльник, утюг и т.д. Поэтому при расчетах электрических цепей следует учитывать такой важный параметр, как электрическая мощность нагрузки. Мощность важно знать во первых для того, чтобы правильно подобрать источник питания и во вторых, чтобы рассчитать нагрузку соответствующей мощности. При недостаточной мощности нагрузки, сопротивление нагрузки будет нагреваться и в конечном итоге перегорит. Мощность обозначается буквой Р и измеряется в единицах - ВАТТ (обозначается Вт или W). Мощность рассчитывается по формулам показанным на рисунке.
Теперь, обладая определенными знаниями, подсчитаем мощность на сопротивлениях R1, R2 и R3 включенных как показано на рисунке. R1 = 100 ОМ, R2 = 200 Ом и R3 = 200 Ом.


Сначала найдем суммарное сопротивление Re параллельно включенных сопротивлений R2 и R3. Re = R2 * R3 / (R2+R3). Re = 200 * 200 / (200+200) = 40000 / 400=100 Ом. Найдем ток I1. I1 = U / (R1+Re) = 12 / (100+100) = 12 / 200 = 0,06A. По определению ток I1 равен току Ie, следовательно мы можем найти напряжение Ure на сопротивлении Re. Ure = Ie * Re = 0,06 * 100 = 6 V.
Найдем мощность Pr1 на резисторе R1.
Pr1 = I1 2 * R1 = 0,06 2 * 100 = 0,0036 * 100 = 0,36W.
Найдем мощность Pr2 на резисторе R2.
Pr2 = Ure 2 / R2 = 6 2 / 200 = 36 / 200 = 0,18W.
Так как R2=R3 то мощность на R3 равна мощности на R2 и равна 0,18W (Ватт).

Измерения в цепях постоянного тока
На практике, часто бывает нужно измерить какие либо параметры участка электрической цепи. Обычно это ток, напряжение или сопротивление. Для каждого вида измерения существует свой измерительный прибор. Для измерения напряжения используется прибор, который называется ВОЛЬТМЕТР, для измерения тока - прибор АМПЕРМЕТР и для измерения сопротивления ОММЕТР.


Для ремонта, регулировки и настройки радио и электронной аппаратуры обычно используют универсальные измерительные приборы, которые называются ТЕСТЕР или МУЛЬТИМЕТР. Эти приборы могут, в зависимости от положения переключателя режимов, измерять ток, напряжение или сопротивление.

По отображению результата измерений мультиметры делятся на цифровые и аналоговые. На рисунке показаны оба типа приборов. У обоих приборов общими являются переключатели пределов измерений. Пределы измерений сгруп- пированы по функциональному назначению (на рисунке группы обозначены V, A и Ом).
На рисунке переключатели пределов измерений у обоих приборов установлены на измерение напряжения с пределом в 5 Вольт. Знаками + и - обозначены клеммы для подключения проводников к измеряемой цепи.
    Электрический ТОК в цепи измеряется АМПЕРМЕТРОМ. Амперметр включается последовательно с нагрузкой.

При измерении неизвестного тока предел измерения тока лучше установить на максимальное значение, чтобы не повредить прибор. На рисунке предел измерений установлен на измерение максимального значения тока 1 Ампер.    Электрическое НАПРЯЖЕНИЕ на сопротивлении или участке цепи измеряется ВОЛЬТМЕТРОМ. Вольтметр включается параллельно сопротивлению или участку цепи.

При измерении неизвестного напряжения предел измерения на вольтметре следует установить на максимальное значение. Если показания прибора слишком малы то предел измерения следует постепенно уменьшать.
    Электрическое СОПРОТИВЛЕНИЕ измеряется ОММЕТРОМ. Омметр подключается параллельно измеряемому сопротивлению.

Обязательным условием для измерения сопротивления должно быть то, что электрическая цепь должна быть обесточена. Так же необходимо иметь в виду что измеряемое сопротивление не должно иметь параллельного подключения к другому сопротивлению.

Последние материалы раздела:

Как зайти в BIOS или UEFI на ноутбуке Acer
Как зайти в BIOS или UEFI на ноутбуке Acer

Если ноутбук стал заметно тормозить или операционная система при включении устройства загружается намного медленнее, чем обычно (а то и вовсе не...

Как свернуть игру: все способы в одном месте
Как свернуть игру: все способы в одном месте

Папки и приложения на любом ПК открываются в окнах. Предусматриваются для них такие стандартные команды, как: закрыть, свернуть, развернуть или...

Бесплатная лечащая утилита доктор веб для лечения вашего компьютера
Бесплатная лечащая утилита доктор веб для лечения вашего компьютера

Dr Web CureIt! - антивирусная лечащая утилита от известного производителя антивирусного программного обеспечения, российской компании «Доктор Веб»....